When.com Web Search

  1. Ad

    related to: bi vectors in geometry ppt powerpoint notes

Search results

  1. Results From The WOW.Com Content Network
  2. Bivector - Wikipedia

    en.wikipedia.org/wiki/Bivector

    The non-zero vectors in Cl n (R) or R n are associated with points in the projective space so vectors that differ only by a scale factor, so their exterior product is zero, map to the same point. Non-zero simple bivectors in ⋀ 2 R n represent lines in RP n −1 , with bivectors differing only by a (positive or negative) scale factor ...

  3. Beltrami–Klein model - Wikipedia

    en.wikipedia.org/wiki/Beltrami–Klein_model

    Many hyperbolic lines through point P not intersecting line a in the Beltrami Klein model A hyperbolic triheptagonal tiling in a Beltrami–Klein model projection. In geometry, the Beltrami–Klein model, also called the projective model, Klein disk model, and the Cayley–Klein model, is a model of hyperbolic geometry in which points are represented by the points in the interior of the unit ...

  4. Mathematical descriptions of the electromagnetic field

    en.wikipedia.org/wiki/Mathematical_descriptions...

    The derivatives that appear in Maxwell's equations are vectors and electromagnetic fields are represented by the Faraday bivector F. This formulation is as general as that of differential forms for manifolds with a metric tensor, as then these are naturally identified with r-forms and there are corresponding operations. Maxwell's equations ...

  5. Bilinear form - Wikipedia

    en.wikipedia.org/wiki/Bilinear_form

    In mathematics, a bilinear form is a bilinear map V × V → K on a vector space V (the elements of which are called vectors) over a field K (the elements of which are called scalars). In other words, a bilinear form is a function B : V × V → K that is linear in each argument separately: B(u + v, w) = B(u, w) + B(v, w) and B(λu, v) = λB(u, v)

  6. Covariance and contravariance of vectors - Wikipedia

    en.wikipedia.org/wiki/Covariance_and_contra...

    Likewise, vectors whose components are contravariant push forward under smooth mappings, so the operation assigning the space of (contravariant) vectors to a smooth manifold is a covariant functor. Secondly, in the classical approach to differential geometry, it is not bases of the tangent bundle that are the most primitive object, but rather ...

  7. Euclidean planes in three-dimensional space - Wikipedia

    en.wikipedia.org/wiki/Euclidean_planes_in_three...

    where s and t range over all real numbers, v and w are given linearly independent vectors defining the plane, and r 0 is the vector representing the position of an arbitrary (but fixed) point on the plane. The vectors v and w can be visualized as vectors starting at r 0 and pointing in different directions along the plane.

  8. Frenet–Serret formulas - Wikipedia

    en.wikipedia.org/wiki/Frenet–Serret_formulas

    A space curve; the vectors T, N, B; and the osculating plane spanned by T and N. In differential geometry, the Frenet–Serret formulas describe the kinematic properties of a particle moving along a differentiable curve in three-dimensional Euclidean space, or the geometric properties of the curve itself irrespective of any motion.

  9. Rodrigues' rotation formula - Wikipedia

    en.wikipedia.org/wiki/Rodrigues'_rotation_formula

    Vector geometry of Rodrigues' rotation formula, as well as the decomposition into parallel and perpendicular components. Let k be a unit vector defining a rotation axis, and let v be any vector to rotate about k by angle θ ( right hand rule , anticlockwise in the figure), producing the rotated vector v rot {\displaystyle \mathbb {v} _{\text ...