When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Bohr model - Wikipedia

    en.wikipedia.org/wiki/Bohr_model

    The Bohr model is a relatively primitive model of the hydrogen atom, compared to the valence shell model. As a theory, it can be derived as a first-order approximation of the hydrogen atom using the broader and much more accurate quantum mechanics and thus may be considered to be an obsolete scientific theory .

  3. Electron shell - Wikipedia

    en.wikipedia.org/wiki/Electron_shell

    In 1913, Niels Bohr proposed a model of the atom, giving the arrangement of electrons in their sequential orbits. At that time, Bohr allowed the capacity of the inner orbit of the atom to increase to eight electrons as the atoms got larger, and "in the scheme given below the number of electrons in this [outer] ring is arbitrary put equal to the normal valency of the corresponding element".

  4. Electron configuration - Wikipedia

    en.wikipedia.org/wiki/Electron_configuration

    His proposals were based on the then current Bohr model of the atom, in which the electron shells were orbits at a fixed distance from the nucleus. Bohr's original configurations would seem strange to a present-day chemist: sulfur was given as 2.4.4.6 instead of 1s 2 2s 2 2p 6 3s 2 3p 4 (2.8.6). Bohr used 4 and 6 following Alfred Werner's 1893 ...

  5. Electron configurations of the elements (data page) - Wikipedia

    en.wikipedia.org/wiki/Electron_configurations_of...

    Here [Ne] refers to the core electrons which are the same as for the element neon (Ne), the last noble gas before phosphorus in the periodic table. The valence electrons (here 3s 2 3p 3) are written explicitly for all atoms. Electron configurations of elements beyond hassium (element 108) have never been measured; predictions are used below.

  6. File:Bohr Model.svg - Wikipedia

    en.wikipedia.org/wiki/File:Bohr_Model.svg

    I created this file to be an SVG alternative to Image:Bohratommodel.png and Image:Bohr model Balmer 32.png. I did not draw the orbitals to scale like the latter diagram because I could not readily find information about the orbitals' radii. For some reason, the "+" on the nucleus is rendering off-centered. The SVG doesn't look like that.

  7. Shallow donor - Wikipedia

    en.wikipedia.org/wiki/Shallow_donor

    Essentially the electron orbits the donor ion within the semiconductor material at approximately the bohr radius. This is in contrast to deep level donors where the short range potential determines the energy levels, not the effective mass states. This contributes additional energy states that can be used for conduction.

  8. Principal quantum number - Wikipedia

    en.wikipedia.org/wiki/Principal_quantum_number

    The principal quantum number was first created for use in the semiclassical Bohr model of the atom, distinguishing between different energy levels. With the development of modern quantum mechanics, the simple Bohr model was replaced with a more complex theory of atomic orbitals. However, the modern theory still requires the principal quantum ...

  9. Stark effect - Wikipedia

    en.wikipedia.org/wiki/Stark_effect

    While the first-order-perturbation (linear) Stark effect in hydrogen is in agreement with both the old Bohr–Sommerfeld model and the quantum-mechanical theory of the atom, higher-order corrections are not. [9] Measurements of the Stark effect under high field strengths confirmed the correctness of the new quantum theory.