Search results
Results From The WOW.Com Content Network
Expected shortfall is considered a more useful risk measure than VaR because it is a coherent spectral measure of financial portfolio risk. It is calculated for a given quantile -level q {\displaystyle q} and is defined to be the mean loss of portfolio value given that a loss is occurring at or below the q {\displaystyle q} -quantile.
Under some formulations, it is only equivalent to expected shortfall when the underlying distribution function is continuous at (), the value at risk of level . [2] Under some other settings, TVaR is the conditional expectation of loss above a given value, whereas the expected shortfall is the product of this value with the probability of ...
Under these conditions the 95% VaR for holding either of the bonds is 0 since the probability of default is less than 5%. However if we held a portfolio that consisted of 50% of each bond by value then the 95% VaR is 35% (= 0.5*0.7 + 0.5*0) since the probability of at least one of the bonds defaulting is 7.84% (= 1 - 0.96*0.96) which exceeds 5%.
In probability theory, the conditional expectation, conditional expected value, or conditional mean of a random variable is its expected value evaluated with respect to the conditional probability distribution. If the random variable can take on only a finite number of values, the "conditions" are that the variable can only take on a subset of ...
The 1% VaR is then $0, because the probability of any loss at all is 1/128 which is less than 1%. They are, however, exposed to a possible loss of $12,700 which can be expressed as the p VaR for any p ≤ 0.78125% (1/128). [3] VaR has four main uses in finance: risk management, financial control, financial reporting and computing regulatory ...
In words: the variance of Y is the sum of the expected conditional variance of Y given X and the variance of the conditional expectation of Y given X. The first term captures the variation left after "using X to predict Y", while the second term captures the variation due to the mean of the prediction of Y due to the randomness of X.
Many risk measures have hitherto been proposed, each having certain characteristics. The entropic value at risk (EVaR) is a coherent risk measure introduced by Ahmadi-Javid, [1] [2] which is an upper bound for the value at risk (VaR) and the conditional value at risk (CVaR), obtained from the Chernoff inequality.
Condition numbers can also be defined for nonlinear functions, and can be computed using calculus.The condition number varies with the point; in some cases one can use the maximum (or supremum) condition number over the domain of the function or domain of the question as an overall condition number, while in other cases the condition number at a particular point is of more interest.