Search results
Results From The WOW.Com Content Network
The multiple subset sum problem is an optimization problem in computer science and operations research. It is a generalization of the subset sum problem . The input to the problem is a multiset S {\displaystyle S} of n integers and a positive integer m representing the number of subsets.
Maximum subarray problems arise in many fields, such as genomic sequence analysis and computer vision.. Genomic sequence analysis employs maximum subarray algorithms to identify important biological segments of protein sequences that have unusual properties, by assigning scores to points within the sequence that are positive when a motif to be recognized is present, and negative when it is not ...
Let A be the sum of the negative values and B the sum of the positive values; the number of different possible sums is at most B-A, so the total runtime is in (()). For example, if all input values are positive and bounded by some constant C , then B is at most N C , so the time required is O ( N 2 C ) {\displaystyle O(N^{2}C)} .
In the subset sum problem, the goal is to find a subset of S whose sum is a certain target number T given as input (the partition problem is the special case in which T is half the sum of S). In multiway number partitioning , there is an integer parameter k , and the goal is to decide whether S can be partitioned into k subsets of equal sum ...
Comparison of two revisions of an example file, based on their longest common subsequence (black) A longest common subsequence (LCS) is the longest subsequence common to all sequences in a set of sequences (often just two sequences).
A subadditive function is a function:, having a domain A and an ordered codomain B that are both closed under addition, with the following property: ,, (+) + ().. An example is the square root function, having the non-negative real numbers as domain and codomain: since , we have: + +.
The Minkowski sum of two sets and of real numbers is the set + := {+:,} consisting of all possible arithmetic sums of pairs of numbers, one from each set. The infimum and supremum of the Minkowski sum satisfy, if A ≠ ∅ ≠ B {\displaystyle A\neq \varnothing \neq B} inf ( A + B ) = ( inf A ) + ( inf B ) {\displaystyle \inf(A+B)=(\inf A ...
The Fibonacci sequence is constant-recursive: each element of the sequence is the sum of the previous two. Hasse diagram of some subclasses of constant-recursive sequences, ordered by inclusion In mathematics , an infinite sequence of numbers s 0 , s 1 , s 2 , s 3 , … {\displaystyle s_{0},s_{1},s_{2},s_{3},\ldots } is called constant ...