Ad
related to: continuity of a function calculator with steps and two times a given fraction
Search results
Results From The WOW.Com Content Network
Checking the continuity of a given function can be simplified by checking one of the above defining properties for the building blocks of the given function. It is straightforward to show that the sum of two functions, continuous on some domain, is also continuous on this domain.
The rate of convergence depends on the absolute value of the ratio between the two roots: the farther that ratio is from unity, the more quickly the continued fraction converges. When the monic quadratic equation with real coefficients is of the form x 2 = c , the general solution described above is useless because division by zero is not well ...
A continued fraction is a mathematical expression that can be written as a fraction with a denominator that is a sum that contains another simple or continued fraction. Depending on whether this iteration terminates with a simple fraction or not, the continued fraction is finite or infinite .
Thomae's function: is a function that is continuous at all irrational numbers and discontinuous at all rational numbers. It is also a modification of Dirichlet function and sometimes called Riemann function. Kronecker delta function: is a function of two variables, usually integers, which is 1 if they are equal, and 0 otherwise.
Given two metric spaces (X, d X) and (Y, d Y), where d X denotes the metric on the set X and d Y is the metric on set Y, a function f : X → Y is called Lipschitz continuous if there exists a real constant K ≥ 0 such that, for all x 1 and x 2 in X,
Then f is a non-decreasing function on [a, b], which is continuous except for jump discontinuities at x n for n ≥ 1. In the case of finitely many jump discontinuities, f is a step function. The examples above are generalised step functions; they are very special cases of what are called jump functions or saltus-functions. [8] [9]
In mathematics, the Stieltjes transformation S ρ (z) of a measure of density ρ on a real interval I is the function of the complex variable z defined outside I by the formula S ρ ( z ) = ∫ I ρ ( t ) d t t − z , z ∈ C ∖ I . {\displaystyle S_{\rho }(z)=\int _{I}{\frac {\rho (t)\,dt}{t-z}},\qquad z\in \mathbb {C} \setminus I.}
A natural follow-up question one might ask is if there is a function which is continuous on the rational numbers and discontinuous on the irrational numbers. This turns out to be impossible. The set of discontinuities of any function must be an F σ set. If such a function existed, then the irrationals would be an F σ set.