When.com Web Search

  1. Ad

    related to: continuity of a function calculator with steps and two times a given fraction

Search results

  1. Results From The WOW.Com Content Network
  2. Continuous function - Wikipedia

    en.wikipedia.org/wiki/Continuous_function

    Checking the continuity of a given function can be simplified by checking one of the above defining properties for the building blocks of the given function. It is straightforward to show that the sum of two functions, continuous on some domain, is also continuous on this domain.

  3. Solving quadratic equations with continued fractions - Wikipedia

    en.wikipedia.org/wiki/Solving_quadratic...

    The rate of convergence depends on the absolute value of the ratio between the two roots: the farther that ratio is from unity, the more quickly the continued fraction converges. When the monic quadratic equation with real coefficients is of the form x 2 = c , the general solution described above is useless because division by zero is not well ...

  4. Continued fraction - Wikipedia

    en.wikipedia.org/wiki/Continued_fraction

    A continued fraction is a mathematical expression that can be written as a fraction with a denominator that is a sum that contains another simple or continued fraction. Depending on whether this iteration terminates with a simple fraction or not, the continued fraction is finite or infinite .

  5. List of mathematical functions - Wikipedia

    en.wikipedia.org/wiki/List_of_mathematical_functions

    Thomae's function: is a function that is continuous at all irrational numbers and discontinuous at all rational numbers. It is also a modification of Dirichlet function and sometimes called Riemann function. Kronecker delta function: is a function of two variables, usually integers, which is 1 if they are equal, and 0 otherwise.

  6. Lipschitz continuity - Wikipedia

    en.wikipedia.org/wiki/Lipschitz_continuity

    Given two metric spaces (X, d X) and (Y, d Y), where d X denotes the metric on the set X and d Y is the metric on set Y, a function f : X → Y is called Lipschitz continuous if there exists a real constant K ≥ 0 such that, for all x 1 and x 2 in X,

  7. Discontinuities of monotone functions - Wikipedia

    en.wikipedia.org/wiki/Discontinuities_of...

    Then f is a non-decreasing function on [a, b], which is continuous except for jump discontinuities at x n for n ≥ 1. In the case of finitely many jump discontinuities, f is a step function. The examples above are generalised step functions; they are very special cases of what are called jump functions or saltus-functions. [8] [9]

  8. Stieltjes transformation - Wikipedia

    en.wikipedia.org/wiki/Stieltjes_transformation

    In mathematics, the Stieltjes transformation S ρ (z) of a measure of density ρ on a real interval I is the function of the complex variable z defined outside I by the formula S ρ ( z ) = ∫ I ρ ( t ) d t t − z , z ∈ C ∖ I . {\displaystyle S_{\rho }(z)=\int _{I}{\frac {\rho (t)\,dt}{t-z}},\qquad z\in \mathbb {C} \setminus I.}

  9. Thomae's function - Wikipedia

    en.wikipedia.org/wiki/Thomae's_function

    A natural follow-up question one might ask is if there is a function which is continuous on the rational numbers and discontinuous on the irrational numbers. This turns out to be impossible. The set of discontinuities of any function must be an F σ set. If such a function existed, then the irrationals would be an F σ set.