When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Rate equation - Wikipedia

    en.wikipedia.org/wiki/Rate_equation

    For a typical second-order reaction with rate equation = [] [], if the concentration of reactant B is constant then = [] [] = ′ [], where the pseudo–first-order rate constant ′ = []. The second-order rate equation has been reduced to a pseudo–first-order rate equation, which makes the treatment to obtain an integrated rate equation much ...

  3. Reaction rate constant - Wikipedia

    en.wikipedia.org/wiki/Reaction_rate_constant

    where A and B are reactants C is a product a, b, and c are stoichiometric coefficients,. the reaction rate is often found to have the form: = [] [] Here ⁠ ⁠ is the reaction rate constant that depends on temperature, and [A] and [B] are the molar concentrations of substances A and B in moles per unit volume of solution, assuming the reaction is taking place throughout the volume of the ...

  4. Reaction rate - Wikipedia

    en.wikipedia.org/wiki/Reaction_rate

    This is a bimolecular elementary reaction whose rate is given by the second-order equation = [] [], where k 2 is the rate constant for the second step. However N 2 O 2 is an unstable intermediate whose concentration is determined by the fact that the first step is in equilibrium , so that [ N 2 O 2 ] = K 1 [ NO ] 2 , {\displaystyle {\ce {[N2O2 ...

  5. Molecularity - Wikipedia

    en.wikipedia.org/wiki/Molecularity

    The kinetic order of any elementary reaction or reaction step is equal to its molecularity, and the rate equation of an elementary reaction can therefore be determined by inspection, from the molecularity. [1] The kinetic order of a complex (multistep) reaction, however, is not necessarily equal to the number of molecules involved.

  6. Rate-determining step - Wikipedia

    en.wikipedia.org/wiki/Rate-determining_step

    In fact, however, the observed reaction rate is second-order in NO 2 and zero-order in CO, [5] with rate equation r = k[NO 2] 2. This suggests that the rate is determined by a step in which two NO 2 molecules react, with the CO molecule entering at another, faster, step. A possible mechanism in two elementary steps that explains the rate ...

  7. Lindemann mechanism - Wikipedia

    en.wikipedia.org/wiki/Lindemann_mechanism

    The steady-state rate equation is of mixed order and predicts that a unimolecular reaction can be of either first or second order, depending on which of the two terms in the denominator is larger. At sufficiently low pressures, k − 1 [ M ] ≪ k 2 {\displaystyle k_{-1}[{\ce {M}}]\ll k_{2}} so that d [ P ] / d t = k 1 [ A ] [ M ...

  8. Arrhenius equation - Wikipedia

    en.wikipedia.org/wiki/Arrhenius_equation

    This has the same form as an equation for a straight line: = +, where x is the reciprocal of T. So, when a reaction has a rate constant obeying the Arrhenius equation, a plot of ln k versus T −1 gives a straight line, whose slope and intercept can be used to determine E a and A respectively. This procedure is common in experimental chemical ...

  9. Law of mass action - Wikipedia

    en.wikipedia.org/wiki/Law_of_mass_action

    The expression of the rate equations was rediscovered independently by Jacobus Henricus van 't Hoff. The law is a statement about equilibrium and gives an expression for the equilibrium constant, a quantity characterizing chemical equilibrium. In modern chemistry this is derived using equilibrium thermodynamics.