Search results
Results From The WOW.Com Content Network
In mathematics, Euler's identity [note 1] (also known as Euler's equation) is the equality + = where e {\displaystyle e} is Euler's number , the base of natural logarithms , i {\displaystyle i} is the imaginary unit , which by definition satisfies i 2 = − 1 {\displaystyle i^{2}=-1} , and
Euler's formula is ubiquitous in mathematics, physics, chemistry, and engineering. The physicist Richard Feynman called the equation "our jewel" and "the most remarkable formula in mathematics". [2] When x = π, Euler's formula may be rewritten as e iπ + 1 = 0 or e iπ = −1, which is known as Euler's identity.
The two epimers have opposite configuration at only one stereogenic center out of at least two. [2] All other stereogenic centers in the molecules are the same in each. Epimerization is the interconversion of one epimer to the other epimer. Doxorubicin and epirubicin are two epimers that are used as drugs.
Greek letters are used in mathematics, science, engineering, and other areas where mathematical notation is used as symbols for constants, special functions, and also conventionally for variables representing certain quantities. In these contexts, the capital letters and the small letters represent distinct and unrelated entities.
1.1 Mathematics. 1.2 Physics. 1.3 Chemistry. 1.4 Biology. 1.5 Economics. ... This is a list of equations, by Wikipedia page under appropriate bands of their field.
The number e is a mathematical constant approximately equal to 2.71828 that is the base of the natural logarithm and exponential function.It is sometimes called Euler's number, after the Swiss mathematician Leonhard Euler, though this can invite confusion with Euler numbers, or with Euler's constant, a different constant typically denoted .
A mathematical symbol is a figure or a combination of figures that is used to represent a mathematical object, an action on mathematical objects, a relation between mathematical objects, or for structuring the other symbols that occur in a formula.
This equation, stated by Euler in 1758, [3] is known as Euler's polyhedron formula. [4] It corresponds to the Euler characteristic of the sphere (i.e. χ = 2 {\displaystyle \ \chi =2\ } ), and applies identically to spherical polyhedra .