When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. List of integrals of trigonometric functions - Wikipedia

    en.wikipedia.org/wiki/List_of_integrals_of...

    The following is a list of integrals (antiderivative functions) of trigonometric functions. For antiderivatives involving both exponential and trigonometric functions, see List of integrals of exponential functions. For a complete list of antiderivative functions, see Lists of integrals.

  3. Integration using Euler's formula - Wikipedia

    en.wikipedia.org/wiki/Integration_using_Euler's...

    In integral calculus, Euler's formula for complex numbers may be used to evaluate integrals involving trigonometric functions. Using Euler's formula, any trigonometric function may be written in terms of complex exponential functions, namely e i x {\displaystyle e^{ix}} and e − i x {\displaystyle e^{-ix}} and then integrated.

  4. Tangent half-angle substitution - Wikipedia

    en.wikipedia.org/wiki/Tangent_half-angle...

    The substitution is described in most integral calculus textbooks since the late 19th century, usually without any special name. [5] It is known in Russia as the universal trigonometric substitution , [ 6 ] and also known by variant names such as half-tangent substitution or half-angle substitution .

  5. Trigonometric integral - Wikipedia

    en.wikipedia.org/wiki/Trigonometric_integral

    Sine integral in the complex plane, plotted with a variant of domain coloring. Cosine integral in the complex plane. Note the branch cut along the negative real axis. In mathematics, trigonometric integrals are a family of nonelementary integrals involving trigonometric functions.

  6. Borwein integral - Wikipedia

    en.wikipedia.org/wiki/Borwein_integral

    In mathematics, a Borwein integral is an integral whose unusual properties were first presented by mathematicians David Borwein and Jonathan Borwein in 2001. [1] Borwein integrals involve products of ⁡ (), where the sinc function is given by ⁡ = ⁡ / for not equal to 0, and ⁡ =.

  7. Small-angle approximation - Wikipedia

    en.wikipedia.org/wiki/Small-angle_approximation

    The sine and tangent small-angle approximations are used in relation to the double-slit experiment or a diffraction grating to develop simplified equations like the following, where y is the distance of a fringe from the center of maximum light intensity, m is the order of the fringe, D is the distance between the slits and projection screen ...

  8. Sine and cosine transforms - Wikipedia

    en.wikipedia.org/wiki/Sine_and_cosine_transforms

    Special numerical methods which exploit the structure of the oscillation are required, an example of which is Ooura's method for Fourier integrals [9] This method attempts to evaluate the integrand at locations which asymptotically approach the zeros of the oscillation (either the sine or cosine), quickly reducing the magnitude of positive and ...

  9. Trigonometric substitution - Wikipedia

    en.wikipedia.org/wiki/Trigonometric_substitution

    In the integral , we may use = ⁡, = ⁡, = ⁡. Then, = ⁡ ⁡ = ⁡ (⁡) = ⁡ ⁡ = = + = ⁡ +. The above step requires that > and ⁡ > We can choose to be the principal root of , and impose the restriction / < < / by using the inverse sine function.