Search results
Results From The WOW.Com Content Network
An imperial fluid ounce is 1 ⁄ 20 of an imperial pint, 1 ⁄ 160 of an imperial gallon or exactly 28.4130625 mL. A US customary fluid ounce is 1 ⁄ 16 of a US liquid pint and 1 ⁄ 128 of a US liquid gallon or exactly 29.5735295625 mL, making it about 4.08% larger than the imperial fluid ounce. A US food labeling fluid ounce is exactly 30 mL.
Weight is measured in ounces and pounds (avoirdupois) as in the U.S. Volume is measured in imperial gallons, quarts, pints, fluid ounces, fluid drachms, and minims. The imperial gallon was originally defined as 10 pounds (4.5359 kg) of water in 1824, and refined as exactly 4.54609 litres in 1985.
Flask is a British unit of mass or weight in the avoirdupois system, ... It is defined as 76 pounds (34 kg). [1] ... ≡ 34.47302012 kg References This page ...
One litre of water has a mass of almost exactly one kilogram when measured at its maximal density, which occurs at about 4 °C. It follows, therefore, that 1000th of a litre, known as one millilitre (1 mL), of water has a mass of about 1 g; 1000 litres of water has a mass of about 1000 kg (1 tonne or megagram). This relationship holds because ...
The specific weight, also known as the unit weight (symbol γ, the Greek letter gamma), is a volume-specific quantity defined as the weight W divided by the volume V of a material: = / Equivalently, it may also be formulated as the product of density, ρ, and gravity acceleration, g: = Its unit of measurement in the International System of Units (SI) is newton per cubic metre (N/m 3), with ...
See Weight for detail of mass/weight distinction and conversion. Avoirdupois is a system of mass based on a pound of 16 ounces, while Troy weight is the system of mass where 12 troy ounces equals one troy pound. The symbol g 0 is used to denote standard gravity in order to avoid confusion with the (upright) g symbol for gram.
This common usage of % to mean m/v in biology is because of many biological solutions being dilute and water-based, an aqueous solution. Liquid water has a density of approximately 1 g/cm 3 (1 g/mL). Thus 100 mL of water is equal to approximately 100 g.
The molar mass of atoms of an element is given by the relative atomic mass of the element multiplied by the molar mass constant, M u ≈ 1.000 000 × 10 −3 kg/mol ≈ 1 g/mol. For normal samples from Earth with typical isotope composition, the atomic weight can be approximated by the standard atomic weight [2] or the conventional atomic weight.