Ad
related to: symmetric matrix positive definite shape calculator math equation solver
Search results
Results From The WOW.Com Content Network
In mathematics, a symmetric matrix with real entries is positive-definite if the real number is positive for every nonzero real column vector, where is the row vector transpose of . [1] More generally, a Hermitian matrix (that is, a complex matrix equal to its conjugate transpose) is positive-definite if the real number is positive for every nonzero complex column vector , where denotes the ...
Conjugate gradient, assuming exact arithmetic, converges in at most n steps, where n is the size of the matrix of the system (here n = 2). In mathematics, the conjugate gradient method is an algorithm for the numerical solution of particular systems of linear equations, namely those whose matrix is positive-semidefinite.
In linear algebra, the Cholesky decomposition or Cholesky factorization (pronounced / ʃ ə ˈ l ɛ s k i / shə-LES-kee) is a decomposition of a Hermitian, positive-definite matrix into the product of a lower triangular matrix and its conjugate transpose, which is useful for efficient numerical solutions, e.g., Monte Carlo simulations.
Similarly in characteristic different from 2, each diagonal element of a skew-symmetric matrix must be zero, since each is its own negative. In linear algebra, a real symmetric matrix represents a self-adjoint operator [1] represented in an orthonormal basis over a real inner product space.
For a symmetric positive definite matrix the preconditioner is typically chosen to be symmetric positive definite as well. The preconditioned operator P − 1 A {\\displaystyle P^{-1}A} is then also symmetric positive definite, but with respect to the P {\\displaystyle P} -based scalar product .
Uniqueness: for positive definite matrices Cholesky decomposition is unique. However, it is not unique in the positive semi-definite case. Comment: if is real and symmetric, has all real elements; Comment: An alternative is the LDL decomposition, which can avoid extracting square roots.
Though it can be applied to any matrix with non-zero elements on the diagonals, convergence is only guaranteed if the matrix is either strictly diagonally dominant, [1] or symmetric and positive definite. It was only mentioned in a private letter from Gauss to his student Gerling in 1823. [2] A publication was not delivered before 1874 by ...
For elliptic partial differential equations this matrix is positive definite, which has a decisive influence on the set of possible solutions of the equation in question. [86] The finite element method is an important numerical method to solve partial differential equations, widely applied in simulating complex physical systems. It attempts to ...