Search results
Results From The WOW.Com Content Network
Double-precision floating-point format (sometimes called FP64 or float64) is a floating-point number format, usually occupying 64 bits in computer memory; it represents a wide range of numeric values by using a floating radix point. Double precision may be chosen when the range or precision of single precision would be insufficient.
Floating-point arithmetic operations, such as addition and division, approximate the corresponding real number arithmetic operations by rounding any result that is not a floating-point number itself to a nearby floating-point number. [1]: 22 [2]: 10 For example, in a floating-point arithmetic with five base-ten digits, the sum 12.345 + 1.0001 ...
Another meaning of range in computer science is an alternative to iterator. When used in this sense, range is defined as "a pair of begin/end iterators packed together". [1] It is argued [1] that "Ranges are a superior abstraction" (compared to iterators) for several reasons, including better safety.
binary (introduced in Java SE 7) 0b11110101 (0b followed by a binary number) octal: 0365 (0 followed by an octal number) hexadecimal: 0xF5 (0x followed by a hexadecimal number) decimal: 245 (decimal number) Floating-point values float 23.5F, .5f, 1.72E3F (decimal fraction with an optional exponent indicator, followed by F)
This can express values in the range ±65,504, with the minimum value above 1 being 1 + 1/1024. Depending on the computer, half-precision can be over an order of magnitude faster than double precision, e.g. 550 PFLOPS for half-precision vs 37 PFLOPS for double precision on one cloud provider. [1]
For example, while a fixed-point representation that allocates 8 decimal digits and 2 decimal places can represent the numbers 123456.78, 8765.43, 123.00, and so on, a floating-point representation with 8 decimal digits could also represent 1.2345678, 1234567.8, 0.000012345678, 12345678000000000, and so on.
The distance between the limiting iterators, in terms of the number of applications of the operator ++ needed to transform the lower limit into the upper one, equals the number of items in the designated range; the number of distinct iterator values involved is one more than that. By convention, the lower limiting iterator "points to" the first ...
The decimal number 0.15625 10 represented in binary is 0.00101 2 (that is, 1/8 + 1/32). (Subscripts indicate the number base .) Analogous to scientific notation , where numbers are written to have a single non-zero digit to the left of the decimal point, we rewrite this number so it has a single 1 bit to the left of the "binary point".