Search results
Results From The WOW.Com Content Network
The post-increment and post-decrement operators increase (or decrease) the value of their operand by 1, but the value of the expression is the operand's value prior to the increment (or decrement) operation. In languages where increment/decrement is not an expression (e.g., Go), only one version is needed (in the case of Go, post operators only).
Most of the operators available in C and C++ are also available in other C-family languages such as C#, D, Java, Perl, and PHP with the same precedence, associativity, and semantics. Many operators specified by a sequence of symbols are commonly referred to by a name that consists of the name of each symbol.
For example, consider variables a, b and c of some user-defined type, such as matrices: a + b * c. In a language that supports operator overloading, and with the usual assumption that the * operator has higher precedence than the + operator, this is a concise way of writing: Add(a, Multiply(b, c))
Video: Keys pressed for calculating eight times six on a HP-32SII (employing RPN) from 1991. Reverse Polish notation (RPN), also known as reverse Łukasiewicz notation, Polish postfix notation or simply postfix notation, is a mathematical notation in which operators follow their operands, in contrast to prefix or Polish notation (PN), in which operators precede their operands.
(e.g. (a * b) * c = a * (b * c)). Many programming language manuals provide a table of operator precedence and associativity; see, for example, the table for C and C++ . The concept of notational associativity described here is related to, but different from, the mathematical associativity .
In geometry, perpendicular lines a and b are denoted , and in projective geometry two points b and c are in perspective when while they are connected by a projectivity when . Infix notation is more difficult to parse by computers than prefix notation (e.g. + 2 2) or postfix notation (e.g. 2 2 + ).
In mathematics, a unary operation is an operation with only one operand, i.e. a single input. [1] This is in contrast to binary operations, which use two operands. [2] An example is any function : , where A is a set; the function is a unary operation on A.
Integer overflow can be demonstrated through an odometer overflowing, a mechanical version of the phenomenon. All digits are set to the maximum 9 and the next increment of the white digit causes a cascade of carry-over additions setting all digits to 0, but there is no higher digit (1,000,000s digit) to change to a 1, so the counter resets to zero.