Search results
Results From The WOW.Com Content Network
String functions are used in computer programming languages to manipulate a string or query information about a string (some do both).. Most programming languages that have a string datatype will have some string functions although there may be other low-level ways within each language to handle strings directly.
T denotes the input text to be searched. Its length is n. P denotes the string to be searched for, called the pattern. Its length is m. S[i] denotes the character at index i of string S, counting from 1. S[i..j] denotes the substring of string S starting at index i and ending at j, inclusive.
A string-searching algorithm, sometimes called string-matching algorithm, is an algorithm that searches a body of text for portions that match by pattern. A basic example of string searching is when the pattern and the searched text are arrays of elements of an alphabet ( finite set ) Σ.
INPUT (n)-- return the character at position n RULE (R: Rule, P: Position) entry = GET_MEMO (R, P)-- return the number of elements previously matched in rule R at position P if entry == nil then return EVAL (R, P); end return entry; EVAL (R: Rule, P: Position) start = P; for choice in R. choices-- Return a list of choice acc = 0; for symbol in ...
COBOL uses the STRING statement to concatenate string variables. MATLAB and Octave use the syntax "[x y]" to concatenate x and y. Visual Basic and Visual Basic .NET can also use the "+" sign but at the risk of ambiguity if a string representing a number and a number are together. Microsoft Excel allows both "&" and the function "=CONCATENATE(X,Y)".
In Python 2 (and most other programming languages), unless explicitly requested, x / y performed integer division, returning a float only if either input was a float. However, because Python is a dynamically-typed language, it was not always possible to tell which operation was being performed, which often led to subtle bugs, thus prompting the ...
In information theory, the Hamming distance between two strings or vectors of equal length is the number of positions at which the corresponding symbols are different. In other words, it measures the minimum number of substitutions required to change one string into the other, or equivalently, the minimum number of errors that could have transformed one string into the other.
After processing n input elements, the input sequence can be partitioned into (n−c) / 2 pairs of unequal elements, and c copies of m left over. This is a proof by induction; it is trivially true when n = c = 0, and is maintained every time an element x is added: If x = m, add it to the set of c copies of m (and increment c).