Search results
Results From The WOW.Com Content Network
A heap overflow, heap overrun, or heap smashing is a type of buffer overflow that occurs in the heap data area. Heap overflows are exploitable in a different manner to that of stack-based overflows. Memory on the heap is dynamically allocated at runtime and typically contains program data.
Many different types of memory errors can occur: [24] [25] Spatial. Buffer overflow – out-of-bound writes can corrupt the content of adjacent objects, or internal data (like bookkeeping information for the heap) or return addresses.
Visualization of a software buffer overflow. Data is written into A, but is too large to fit within A, so it overflows into B.. In programming and information security, a buffer overflow or buffer overrun is an anomaly whereby a program writes data to a buffer beyond the buffer's allocated memory, overwriting adjacent memory locations.
Java memory use is much higher than C++'s memory use because: There is an overhead of 8 bytes for each object and 12 bytes for each array [61] in Java. If the size of an object is not a multiple of 8 bytes, it is rounded up to next multiple of 8. This means an object holding one byte field occupies 16 bytes and needs a 4-byte reference.
Heap sprays take advantage of the fact that on most architectures and operating systems, the start location of large heap allocations is predictable and consecutive allocations are roughly sequential. This means that the sprayed heap will roughly be in the same location each and every time the heap spray is run.
This shows the typical layout of a simple computer's program memory with the text, various data, and stack and heap sections. The data segment contains initialized static variables, i.e. global variables and local static variables which have a defined value and can be modified. Examples in C include:
The same applies to longjmp if it moved to a point before the call to alloca happened.) If, however, the data needs to be kept in some form, then it must be copied from the stack to the heap before the function exits. Therefore, stack based allocation is suitable for temporary data or data which is no longer required after the current function ...
procedure heapsort(a, count) is input: an unordered array a of length count (Build the heap in array a so that largest value is at the root) heapify(a, count) (The following loop maintains the invariants that a[0:end−1] is a heap, and every element a[end:count−1] beyond end is greater than everything before it, i.e. a[end:count−1] is in ...