When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Likelihood function - Wikipedia

    en.wikipedia.org/wiki/Likelihood_function

    The fact that the likelihood function can be defined in a way that includes contributions that are not commensurate (the density and the probability mass) arises from the way in which the likelihood function is defined up to a constant of proportionality, where this "constant" can change with the observation , but not with the parameter .

  3. Logistic regression - Wikipedia

    en.wikipedia.org/wiki/Logistic_regression

    For logistic regression, the measure of goodness-of-fit is the likelihood function L, or its logarithm, the log-likelihood ℓ. The likelihood function L is analogous to the in the linear regression case, except that the likelihood is maximized rather than minimized. Denote the maximized log-likelihood of the proposed model by ^.

  4. Multinomial logistic regression - Wikipedia

    en.wikipedia.org/wiki/Multinomial_logistic...

    The unknown parameters in each vector β k are typically jointly estimated by maximum a posteriori (MAP) estimation, which is an extension of maximum likelihood using regularization of the weights to prevent pathological solutions (usually a squared regularizing function, which is equivalent to placing a zero-mean Gaussian prior distribution on ...

  5. Logistic function - Wikipedia

    en.wikipedia.org/wiki/Logistic_function

    The standard logistic function is the logistic function with parameters =, =, =, which yields = + = + = / / + /.In practice, due to the nature of the exponential function, it is often sufficient to compute the standard logistic function for over a small range of real numbers, such as a range contained in [−6, +6], as it quickly converges very close to its saturation values of 0 and 1.

  6. Relative likelihood - Wikipedia

    en.wikipedia.org/wiki/Relative_likelihood

    A likelihood region is the set of all values of θ whose relative likelihood is greater than or equal to a given threshold. In terms of percentages, a p % likelihood region for θ is defined to be. [1] [3] [6]

  7. Estimating equations - Wikipedia

    en.wikipedia.org/wiki/Estimating_equations

    In statistics, the method of estimating equations is a way of specifying how the parameters of a statistical model should be estimated.This can be thought of as a generalisation of many classical methods—the method of moments, least squares, and maximum likelihood—as well as some recent methods like M-estimators.

  8. Estimation of covariance matrices - Wikipedia

    en.wikipedia.org/wiki/Estimation_of_covariance...

    An alternative derivation of the maximum likelihood estimator can be performed via matrix calculus formulae (see also differential of a determinant and differential of the inverse matrix). It also verifies the aforementioned fact about the maximum likelihood estimate of the mean. Re-write the likelihood in the log form using the trace trick:

  9. Log-likelihood function - Wikipedia

    en.wikipedia.org/?title=Log-likelihood_function&...

    Retrieved from "https://en.wikipedia.org/w/index.php?title=Log-likelihood_function&oldid=901713880"