Ad
related to: va static vs permanent power pole
Search results
Results From The WOW.Com Content Network
The volt-ampere (SI symbol: VA, [1] sometimes V⋅A or V A) is the unit of measurement for apparent power in an electrical circuit. It is the product of the root mean square voltage (in volts ) and the root mean square current (in amperes ). [ 2 ]
Magnetic pole model: In the magnetic pole model, the pole surfaces of a permanent magnet are imagined to be covered with so-called magnetic charge, north pole particles on the north pole and south pole particles' on the south pole, that are the source of the magnetic field lines.
In the magnetic pole model, the elementary magnetic dipole m is formed by two opposite magnetic poles of pole strength q m separated by a small distance vector d, such that m = q m d. The magnetic pole model predicts correctly the field H both inside and outside magnetic materials, in particular the fact that H is opposite to the magnetization ...
Magnetostatics is even a good approximation when the currents are not static – as long as the currents do not alternate rapidly. Magnetostatics is widely used in applications of micromagnetics such as models of magnetic storage devices as in computer memory .
A utility pole, commonly referred to as a transmission pole, telephone pole, telecommunication pole, power pole, hydro pole, telegraph pole, or telegraph post, is a column or post used to support overhead power lines and various other public utilities, such as electrical cable, fiber optic cable, and related equipment such as transformers and ...
A magnet's North pole is defined as the pole that is attracted by the Earth's North Magnetic Pole, in the arctic region, when the magnet is suspended so it can turn freely. Since opposite poles attract, the North Magnetic Pole of the Earth is really the south pole of its magnetic field (the place where the field is directed downward into the ...
Magnetic scalar potential, ψ, is a quantity in classical electromagnetism analogous to electric potential.It is used to specify the magnetic H-field in cases when there are no free currents, in a manner analogous to using the electric potential to determine the electric field in electrostatics.
If we rotate one of the hard magnets (north pole point down), the iron U on top will see a north pole and a south pole. The other iron U will see exactly the opposite. In this way almost all the magnetic flux will be concentrated inside both iron U's creating a close circuit for the magnetic field (because the high permeability of the iron).