When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Effective nuclear charge - Wikipedia

    en.wikipedia.org/wiki/Effective_nuclear_charge

    In atomic physics, the effective nuclear charge of an electron in a multi-electron atom or ion is the number of elementary charges an electron experiences by the nucleus. It is denoted by Z eff . The term "effective" is used because the shielding effect of negatively charged electrons prevent higher energy electrons from experiencing the full ...

  3. Slater's rules - Wikipedia

    en.wikipedia.org/wiki/Slater's_rules

    If the group is of the [ns, np] type, an amount of 0.85 from each electron with principal quantum number (n–1), and an amount of 1.00 for each electron with principal quantum number (n–2) or less. If the group is of the [d] or [f], type, an amount of 1.00 for each electron "closer" to the nucleus than the group.

  4. Zeeman effect - Wikipedia

    en.wikipedia.org/wiki/Zeeman_effect

    The sodium vapour lamp emits light at 589nm, which has precisely the energy to excite an electron of a sodium atom. If it was an atom of another element, like chlorine, shadow will not be formed. [ 18 ] [ failed verification ] When a magnetic field is applied, due to the Zeeman effect the spectral line of sodium gets split into several components.

  5. Elementary charge - Wikipedia

    en.wikipedia.org/wiki/Elementary_charge

    The forces due to gravity and viscosity could be calculated based on the size and velocity of the oil drop, so electric force could be deduced. Since electric force, in turn, is the product of the electric charge and the known electric field, the electric charge of the oil drop could be accurately computed.

  6. g-factor (physics) - Wikipedia

    en.wikipedia.org/wiki/G-factor_(physics)

    The spin magnetic moment of a charged, spin-1/2 particle that does not possess any internal structure (a Dirac particle) is given by [1] =, where μ is the spin magnetic moment of the particle, g is the g-factor of the particle, e is the elementary charge, m is the mass of the particle, and S is the spin angular momentum of the particle (with magnitude ħ/2 for Dirac particles).

  7. Electron - Wikipedia

    en.wikipedia.org/wiki/Electron

    The invariant mass of an electron is approximately 9.109 × 10 −31 kg, [80] or 5.489 × 10 −4 Da. Due to mass–energy equivalence, this corresponds to a rest energy of 0.511 MeV (8.19 × 10 −14 J). The ratio between the mass of a proton and that of an electron is about 1836.

  8. Electron affinity (data page) - Wikipedia

    en.wikipedia.org/wiki/Electron_affinity_(data_page)

    Negative electron affinities can be used in those cases where electron capture requires energy, i.e. when capture can occur only if the impinging electron has a kinetic energy large enough to excite a resonance of the atom-plus-electron system. Conversely electron removal from the anion formed in this way releases energy, which is carried out ...

  9. Rutherford scattering experiments - Wikipedia

    en.wikipedia.org/wiki/Rutherford_scattering...

    The prevailing model of atomic structure before Rutherford's experiments was devised by J. J. Thomson. [2]: 123 Thomson had discovered the electron through his work on cathode rays [3] and proposed that they existed within atoms, and an electric current is electrons hopping from one atom to an adjacent one in a series.