When.com Web Search

  1. Ad

    related to: why are all parallelograms trapezoids lines parallel to one pair

Search results

  1. Results From The WOW.Com Content Network
  2. Trapezoid - Wikipedia

    en.wikipedia.org/wiki/Trapezoid

    Some define a trapezoid as a quadrilateral having only one pair of parallel sides (the exclusive definition), thereby excluding parallelograms. [5] Some sources use the term proper trapezoid to describe trapezoids under the exclusive definition, analogous to uses of the word proper in some other mathematical objects. [6]

  3. Parallelogram - Wikipedia

    en.wikipedia.org/wiki/Parallelogram

    For an ellipse, two diameters are said to be conjugate if and only if the tangent line to the ellipse at an endpoint of one diameter is parallel to the other diameter. Each pair of conjugate diameters of an ellipse has a corresponding tangent parallelogram, sometimes called a bounding parallelogram, formed by the tangent lines to the ellipse at ...

  4. Quadrilateral - Wikipedia

    en.wikipedia.org/wiki/Quadrilateral

    Trapezium (UK) or trapezoid (US): at least one pair of opposite sides are parallel. Trapezia (UK) and trapezoids (US) include parallelograms. Isosceles trapezium (UK) or isosceles trapezoid (US): one pair of opposite sides are parallel and the base angles are equal in measure. Alternative definitions are a quadrilateral with an axis of symmetry ...

  5. Isosceles trapezoid - Wikipedia

    en.wikipedia.org/wiki/Isosceles_trapezoid

    Any non-self-crossing quadrilateral with exactly one axis of symmetry must be either an isosceles trapezoid or a kite. [5] However, if crossings are allowed, the set of symmetric quadrilaterals must be expanded to include also the crossed isosceles trapezoids, crossed quadrilaterals in which the crossed sides are of equal length and the other sides are parallel, and the antiparallelograms ...

  6. Intercept theorem - Wikipedia

    en.wikipedia.org/wiki/Intercept_theorem

    If the midpoints of two triangle sides are connected then the resulting line segment is parallel to the third triangle side (Midpoint theorem of triangles). If the midpoints of the two non-parallel sides of a trapezoid are connected, then the resulting line segment is parallel to the other two sides of the trapezoid.

  7. Parallel (geometry) - Wikipedia

    en.wikipedia.org/wiki/Parallel_(geometry)

    the distance between the two lines can be found by locating two points (one on each line) that lie on a common perpendicular to the parallel lines and calculating the distance between them. Since the lines have slope m , a common perpendicular would have slope −1/ m and we can take the line with equation y = − x / m as a common perpendicular.

  8. Rhombus - Wikipedia

    en.wikipedia.org/wiki/Rhombus

    The first property implies that every rhombus is a parallelogram. A rhombus therefore has all of the properties of a parallelogram: for example, opposite sides are parallel; adjacent angles are supplementary; the two diagonals bisect one another; any line through the midpoint bisects the area; and the sum of the squares of the sides equals the ...

  9. Line (geometry) - Wikipedia

    en.wikipedia.org/wiki/Line_(geometry)

    For a convex quadrilateral with at most two parallel sides, the Newton line is the line that connects the midpoints of the two diagonals. [7] For a hexagon with vertices lying on a conic we have the Pascal line and, in the special case where the conic is a pair of lines, we have the Pappus line. Parallel lines are lines in the same plane that ...