Search results
Results From The WOW.Com Content Network
A decimal data type could be implemented as either a floating-point number or as a fixed-point number. In the fixed-point case, the denominator would be set to a fixed power of ten. In the floating-point case, a variable exponent would represent the power of ten to which the mantissa of the number is multiplied.
The integer is: 16777217 The float is: 16777216.000000 Their equality: 1 Note that 1 represents equality in the last line above. This odd behavior is caused by an implicit conversion of i_value to float when it is compared with f_value. The conversion causes loss of precision, which makes the values equal before the comparison. Important takeaways:
The actual sizes of short int, int, and long int are available as the constants short max int, max int, and long max int etc. ^b Commonly used for characters. ^c The ALGOL 68, C and C++ languages do not specify the exact width of the integer types short , int , long , and ( C99 , C++11 ) long long , so they are implementation-dependent.
A floating-point number is a rational number, because it can be represented as one integer divided by another; for example 1.45 × 10 3 is (145/100)×1000 or 145,000 /100. The base determines the fractions that can be represented; for instance, 1/5 cannot be represented exactly as a floating-point number using a binary base, but 1/5 can be ...
The ASCII text-encoding standard uses 7 bits to encode characters. With this it is possible to encode 128 (i.e. 2 7) unique values (0–127) to represent the alphabetic, numeric, and punctuation characters commonly used in English, plus a selection of Control characters which do not represent printable characters.
The representation has a limited precision. For example, only 15 decimal digits can be represented with a 64-bit real. If a very small floating-point number is added to a large one, the result is just the large one. The small number was too small to even show up in 15 or 16 digits of resolution, and the computer effectively discards it.
To make the code a canonical Huffman code, the codes are renumbered. The bit lengths stay the same with the code book being sorted first by codeword length and secondly by alphabetical value of the letter: B = 0 A = 11 C = 101 D = 100 Each of the existing codes are replaced with a new one of the same length, using the following algorithm:
The order in which the enumeration values are given matters. An enumerated type is an ordinal type, and the pred and succ functions will give the prior or next value of the enumeration, and ord can convert enumeration values to their integer representation. Standard Pascal does not offer a conversion from arithmetic types to enumerations, however.