Search results
Results From The WOW.Com Content Network
Coenzyme A (CoA, SHCoA, CoASH) is a coenzyme, notable for its role in the synthesis and oxidation of fatty acids, and the oxidation of pyruvate in the citric acid cycle.All genomes sequenced to date encode enzymes that use coenzyme A as a substrate, and around 4% of cellular enzymes use it (or a thioester) as a substrate.
Acetyl-CoA is a metabolic intermediate that is involved in many metabolic pathways in an organism. It is produced during the breakdown of glucose , fatty acids , and amino acids , and is used in the synthesis of many other biomolecules , including cholesterol , fatty acids , and ketone bodies .
Coenzyme A transferases (CoA-transferases) are transferase enzymes that catalyze the transfer of a coenzyme A group from an acyl-CoA donor to a carboxylic acid acceptor. [ 1 ] [ 2 ] Among other roles, they are responsible for transfer of CoA groups during fermentation and metabolism of ketone bodies .
General chemical structure of an acyl-CoA, where R is a carboxylic acid side chain. Acyl-CoA is a group of CoA-based coenzymes that metabolize carboxylic acids. Fatty acyl-CoA's are susceptible to beta oxidation, forming, ultimately, acetyl-CoA. The acetyl-CoA enters the citric acid cycle, eventually forming several equivalents of ATP. In this ...
The Wood–Ljungdahl pathway is a set of biochemical reactions used by some bacteria. It is also known as the reductive acetyl-coenzyme A pathway. [1] This pathway enables these organisms to use hydrogen (H 2) as an electron donor, and carbon dioxide (CO 2) as an electron acceptor and as a building block to generate acetate for biosynthesis.
coenzyme-A comes in and undergoes hydrogen-atom transfer with the Cys419 radical to generate a coenzyme-A radical. The coenzyme-A radical then picks up the acetyl group from Cys418 to generate acetyl-CoA, leaving behind a Cys418 radical. Pyruvate formate lyase can then undergo radical transfer to put the radical back onto Gly734.
The Wood–Ljungdahl pathway consists of two different reactions that break down carbon dioxide. The first pathway involves CODH converting carbon dioxide into carbon monoxide through a two-electron transfer, and the second reaction involves ACS synthesizing acetyl-CoA using the carbon monoxide from CODH together with coenzyme-A (CoA) and a methyl group from a corrinoid iron-sulfur protein ...
Also, copper ions deactivate acetyl Co-A synthetase by occupying the proximal site of the A-cluster active site, which prevents the enzyme from accepting a methyl group to participate in the Wood-Ljungdahl Pathway. [4] The presence of all the reactants in the proper concentration is also needed for proper functioning as in all enzymes.