Search results
Results From The WOW.Com Content Network
The reaction it catalyzes is: pyruvate + HCO − 3 + ATP → oxaloacetate + ADP + P. It is an important anaplerotic reaction that creates oxaloacetate from pyruvate. PC contains a biotin prosthetic group [1] and is typically localized to the mitochondria in eukaryotes with exceptions to some fungal species such as Aspergillus nidulans which have a cytosolic PC.
Now this pyruvate can easily enter the mitochondria, where it is carboxylated again to oxaloacetate by pyruvate carboxylase. In this way, the transfer of acetyl-CoA that is from the mitochondria into the cytoplasm produces a molecule of NADH. The overall reaction, which is spontaneous, may be summarized as:
Pyruvate generated from alanine will enter glyceroneogenesis and generate glycerol 3-phosphate. Glutamate can also enter glyceroneogenesis. Since the key reaction of glyceroneogenesis is the decarboxylation and phosphorylation of oxaloacetate to phosphoenolpyruvate, in theory any biochemical pathway which generates oxaloacetate is related to ...
Pyruvate is converted into acetyl-coenzyme A, which is the main input for a series of reactions known as the Krebs cycle (also known as the citric acid cycle or tricarboxylic acid cycle). Pyruvate is also converted to oxaloacetate by an anaplerotic reaction , which replenishes Krebs cycle intermediates; also, the oxaloacetate is used for ...
This reaction is catalysed by pyruvate carboxylase, an enzyme activated by acetyl-CoA, indicating a lack of oxaloacetate. It occurs in animal mitochondria. Most important anaplerotic reaction; depending on severity, deficiency causes lactic acidosis, severe psychomotor deficiency or death in infancy
Pyruvate molecules produced by glycolysis are actively transported across the inner mitochondrial membrane, and into the matrix where they can either be oxidized and combined with coenzyme A to form CO 2, acetyl-CoA, and NADH, [35] or they can be carboxylated (by pyruvate carboxylase) to form oxaloacetate. This latter reaction "fills up" the ...
However, it is also possible for pyruvate to be carboxylated by pyruvate carboxylase to form oxaloacetate. This latter reaction "fills up" the amount of oxaloacetate in the citric acid cycle, and is therefore an anaplerotic reaction, increasing the cycle's capacity to metabolize acetyl-CoA when the tissue's energy needs (e.g. in muscle) are ...
This reaction requires inorganic phosphate and ATP plus pyruvate, producing PEP, AMP, and inorganic pyrophosphate (PP i). The next step is the carboxylation of PEP by the PEP carboxylase enzyme (PEPC) producing oxaloacetate. Both of these steps occur in the mesophyll cells: pyruvate + P i + ATP → PEP + AMP + PP i PEP + CO 2 → oxaloacetate