When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Principal component analysis - Wikipedia

    en.wikipedia.org/wiki/Principal_component_analysis

    Principal component analysis (PCA) is a linear dimensionality reduction technique with applications in exploratory data analysis, visualization and data preprocessing.. The data is linearly transformed onto a new coordinate system such that the directions (principal components) capturing the largest variation in the data can be easily identified.

  3. Principal component regression - Wikipedia

    en.wikipedia.org/wiki/Principal_component_regression

    In statistics, principal component regression (PCR) is a regression analysis technique that is based on principal component analysis (PCA). PCR is a form of reduced rank regression . [ 1 ] More specifically, PCR is used for estimating the unknown regression coefficients in a standard linear regression model .

  4. Robust principal component analysis - Wikipedia

    en.wikipedia.org/wiki/Robust_principal_component...

    The 2014 guaranteed algorithm for the robust PCA problem (with the input matrix being = +) is an alternating minimization type algorithm. [12] The computational complexity is (⁡) where the input is the superposition of a low-rank (of rank ) and a sparse matrix of dimension and is the desired accuracy of the recovered solution, i.e., ‖ ^ ‖ where is the true low-rank component and ^ is the ...

  5. Crassulacean acid metabolism - Wikipedia

    en.wikipedia.org/wiki/Crassulacean_acid_metabolism

    However, the reason for CAM in aquatic plants is not due to a lack of available water, but a limited supply of CO 2. [15] CO 2 is limited due to slow diffusion in water, 10000x slower than in air. The problem is especially acute under acid pH, where the only inorganic carbon species present is CO 2, with no available bicarbonate or carbonate ...

  6. Kernel principal component analysis - Wikipedia

    en.wikipedia.org/wiki/Kernel_principal_component...

    Output after kernel PCA, with a Gaussian kernel. Note in particular that the first principal component is enough to distinguish the three different groups, which is impossible using only linear PCA, because linear PCA operates only in the given (in this case two-dimensional) space, in which these concentric point clouds are not linearly separable.

  7. L1-norm principal component analysis - Wikipedia

    en.wikipedia.org/wiki/L1-norm_principal...

    In ()-(), L1-norm ‖ ‖ returns the sum of the absolute entries of its argument and L2-norm ‖ ‖ returns the sum of the squared entries of its argument.If one substitutes ‖ ‖ in by the Frobenius/L2-norm ‖ ‖, then the problem becomes standard PCA and it is solved by the matrix that contains the dominant singular vectors of (i.e., the singular vectors that correspond to the highest ...

  8. Albemarle (ALB) Q4 2024 Earnings Call Transcript - AOL

    www.aol.com/albemarle-alb-q4-2024-earnings...

    We continue to get positive feedback that our customers seek to work with Albemarle for our capabilities, scale, and reach. Lastly, our commitment to people and planet stewardship is fundamental.

  9. Multilinear principal component analysis - Wikipedia

    en.wikipedia.org/wiki/Multilinear_principal...

    Multilinear principal component analysis (MPCA) is a multilinear extension of principal component analysis (PCA) that is used to analyze M-way arrays, also informally referred to as "data tensors". M-way arrays may be modeled by linear tensor models, such as CANDECOMP/Parafac, or by multilinear tensor models, such as multilinear principal ...