Search results
Results From The WOW.Com Content Network
At its core, this proof is non-constructive because it relies on the statement "Either q is rational or it is irrational"—an instance of the law of excluded middle, which is not valid within a constructive proof. The non-constructive proof does not construct an example a and b; it merely gives a number of possibilities (in this case, two ...
In classical real analysis, one way to define a real number is as an equivalence class of Cauchy sequences of rational numbers.. In constructive mathematics, one way to construct a real number is as a function ƒ that takes a positive integer and outputs a rational ƒ(n), together with a function g that takes a positive integer n and outputs a positive integer g(n) such that
An example: we are given the conditional fact that if it is a bear, then it can swim. Then, all 4 possibilities in the truth table are compared to that fact. If it is a bear, then it can swim — T; If it is a bear, then it can not swim — F; If it is not a bear, then it can swim — T because it doesn’t contradict our initial fact.
From the other direction, there has been considerable clarification of what constructive mathematics is—without the emergence of a 'master theory'. For example, according to Errett Bishop's definitions, the continuity of a function such as sin(x) should be proved as a constructive bound on the modulus of continuity, meaning that the existential content of the assertion of continuity is a ...
In proof by exhaustion, the conclusion is established by dividing it into a finite number of cases and proving each one separately. The number of cases sometimes can become very large. For example, the first proof of the four color theorem was a proof by exhaustion with 1,936 cases. This proof was controversial because the majority of the cases ...
The base logic of constructive analysis is intuitionistic logic, which means that the principle of excluded middle is not automatically assumed for every proposition.If a proposition . is provable, this exactly means that the non-existence claim . being provable would be absurd, and so the latter cannot also be provable in a consistent theory.
Bertrand's postulate and a proof; Estimation of covariance matrices; Fermat's little theorem and some proofs; Gödel's completeness theorem and its original proof; Mathematical induction and a proof; Proof that 0.999... equals 1; Proof that 22/7 exceeds π; Proof that e is irrational; Proof that π is irrational
For example, any theorem of classical propositional logic of the form has a proof consisting of an intuitionistic proof of followed by one application of double-negation elimination. Intuitionistic logic can thus be seen as a means of extending classical logic with constructive semantics.