When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Singular point of a curve - Wikipedia

    en.wikipedia.org/wiki/Singular_point_of_a_curve

    Hence, it is technically more correct to discuss singular points of a smooth mapping here rather than a singular point of a curve. The above definitions can be extended to cover implicit curves which are defined as the zero set ⁠ ⁠ of a smooth function, and it is not necessary just to consider algebraic varieties. The definitions can be ...

  3. Singular point of an algebraic variety - Wikipedia

    en.wikipedia.org/wiki/Singular_point_of_an...

    A plane curve defined by an implicit equation (,) =,where F is a smooth function is said to be singular at a point if the Taylor series of F has order at least 2 at this point.. The reason for this is that, in differential calculus, the tangent at the point (x 0, y 0) of such a curve is defined by the equation

  4. Cusp (singularity) - Wikipedia

    en.wikipedia.org/wiki/Cusp_(singularity)

    The definitions for plane curves and implicitly-defined curves have been generalized by René Thom and Vladimir Arnold to curves defined by differentiable functions: a curve has a cusp at a point if there is a diffeomorphism of a neighborhood of the point in the ambient space, which maps the curve onto one of the above-defined cusps.

  5. Singularity (mathematics) - Wikipedia

    en.wikipedia.org/wiki/Singularity_(mathematics)

    The simplest example of singularities are curves that cross themselves. But there are other types of singularities, like cusps. For example, the equation y 2 − x 3 = 0 defines a curve that has a cusp at the origin x = y = 0. One could define the x-axis as a tangent at this point, but this definition can not be the same as the definition at ...

  6. Algebraic curve - Wikipedia

    en.wikipedia.org/wiki/Algebraic_curve

    The study of the analytic structure of an algebraic curve in the neighborhood of a singular point provides accurate information of the topology of singularities. In fact, near a singular point, a real algebraic curve is the union of a finite number of branches that intersect only at the singular point and look either as a cusp or as a smooth curve.

  7. Singularity theory - Wikipedia

    en.wikipedia.org/wiki/Singularity_theory

    It was noticed in the formulation of Bézout's theorem that such singular points must be counted with multiplicity (2 for a double point, 3 for a cusp), in accounting for intersections of curves. It was then a short step to define the general notion of a singular point of an algebraic variety; that is, to allow higher dimensions.

  8. Singularity - Wikipedia

    en.wikipedia.org/wiki/Singularity

    Singular point of a curve, where the curve is not given by a smooth embedding of a parameter; Singular point of an algebraic variety, a point where an algebraic variety is not locally flat; Rational singularity

  9. Regular singular point - Wikipedia

    en.wikipedia.org/wiki/Regular_singular_point

    Point a is an ordinary point when functions p 1 (x) and p 0 (x) are analytic at x = a. Point a is a regular singular point if p 1 (x) has a pole up to order 1 at x = a and p 0 has a pole of order up to 2 at x = a. Otherwise point a is an irregular singular point.