Search results
Results From The WOW.Com Content Network
Eplerenone differs from spironolactone in its extensive metabolism, with a short half-life and inactive metabolites. [4] Eplerenone seems to be about 50 to 75% as potent as spironolactone as an antimineralocorticoid. [24] Hence, 25 mg/day spironolactone may be equivalent to approximately 50 mg/day eplerenone. [25]
Mercury (as methylmercury) in the body has a half-life of about 65 days. Lead in the blood has a half life of 28–36 days. [29] [30] Lead in bone has a biological half-life of about ten years. Cadmium in bone has a biological half-life of about 30 years. Plutonium in bone has a biological half-life of about 100 years.
The molecular formula C 24 H 30 O 6 may refer to: Eplerenone , a steroidal antimineralocorticoid of the spirolactone group Estriol triacetate , an estrogen medication and an estrogen ester
In this situation it is generally uncommon to talk about half-life in the first place, but sometimes people will describe the decay in terms of its "first half-life", "second half-life", etc., where the first half-life is defined as the time required for decay from the initial value to 50%, the second half-life is from 50% to 25%, and so on.
The reinforcing effects of alcohol consumption are mediated by acetaldehyde generated by catalase and other oxidizing enzymes such as cytochrome P-4502E1 in the brain. [60] Although acetaldehyde has been associated with some of the adverse and toxic effects of ethanol, it appears to play a central role in the activation of the mesolimbic ...
Finally, using the Henderson-Hasselbalch equation, and knowing the drug's (pH at which there is an equilibrium between its ionized and non-ionized molecules), it is possible to calculate the non-ionized concentration of the drug and therefore the concentration that will be subject to absorption:
Alternatively, since the radioactive decay contributes to the "physical (i.e. radioactive)" half-life, while the metabolic elimination processes determines the "biological" half-life of the radionuclide, the two act as parallel paths for elimination of the radioactivity, the effective half-life could also be represented by the formula: [1] [2]
The absorption rate constant K a is a value used in pharmacokinetics to describe the rate at which a drug enters into the system. It is expressed in units of time −1. [1] The K a is related to the absorption half-life (t 1/2a) per the following equation: K a = ln(2) / t 1/2a.