Search results
Results From The WOW.Com Content Network
A free vector is a vector quantity having an undefined support or region of application; it can be freely translated with no consequences; a displacement vector is a prototypical example of free vector. Aside from the notion of units and support, physical vector quantities may also differ from Euclidean vectors in terms of metric.
A free vector is a vector quantity having an undefined support or region of application; it can be freely translated with no consequences; a displacement vector is a prototypical example of free vector. Aside from the notion of units and support, physical vector quantities may also differ from Euclidean vectors in terms of metric.
The final column lists some special properties that some of the quantities have, such as their scaling behavior (i.e. whether the quantity is intensive or extensive), their transformation properties (i.e. whether the quantity is a scalar, vector, matrix or tensor), and whether the quantity is conserved.
Pages in category "Vector physical quantities" The following 17 pages are in this category, out of 17 total. ... List of vector quantities; Vector quantity; A ...
An example of a scalar quantity is temperature: the temperature at a given point is a single number. Velocity, on the other hand, is a vector quantity. Other examples of scalar quantities are mass, charge, volume, time, speed, [2] pressure, and electric potential at a point inside a medium.
A physical quantity can be expressed as a value, which is the algebraic multiplication of a numerical value and a unit of measurement. For example, the physical quantity mass, symbol m, can be quantified as m=n kg, where n is the numerical value and kg is the unit symbol (for kilogram). Quantities that are vectors have, besides numerical value ...
Velocity is a physical vector quantity: both magnitude and direction are needed to define it. The scalar absolute value of velocity is called speed, being a coherent derived unit whose quantity is measured in the SI (metric system) as metres per second (m/s or m⋅s −1). For example, "5 metres per second" is a scalar, whereas "5 metres per ...
Similarly, the momentum is a vector quantity and is represented by a boldface symbol: = (,,). The equations in the previous sections, work in vector form if the scalars p and v are replaced by vectors p and v. Each vector equation represents three scalar equations. For example,