Ad
related to: thermal energy efficiency calculator for kids table 2 to 10
Search results
Results From The WOW.Com Content Network
A realistic indication of energy efficiency over an entire year can be achieved by using seasonal COP or seasonal coefficient of performance (SCOP) for heat. Seasonal energy efficiency ratio (SEER) is mostly used for air conditioning. SCOP is a new methodology which gives a better indication of expected real-life performance of heat pump ...
For a heat engine, thermal efficiency is the ratio of the net work output to the heat input; in the case of a heat pump, thermal efficiency (known as the coefficient of performance or COP) is the ratio of net heat output (for heating), or the net heat removed (for cooling) to the energy input (external work). The efficiency of a heat engine is ...
90–95% (multiply by the energy efficiency of electricity generation to compare with other water-heating systems) Electric heater: Electrical to thermal ~100% (essentially all energy is converted into heat, multiply by the energy efficiency of electricity generation to compare with other heating systems) Others: Firearm: Chemical to kinetic
For example, in winter it might be 2 °C outside and 20 °C inside, making a temperature difference of 18 °C or 18 K. If the material has an R-value of 4, it will lose 0.25 W/(°C⋅m 2). With an area of 100 m 2, the heat energy being lost is 0.25 W/(K⋅m 2) × 18 °C × 100 m 2 = 450 W.
An electrical resistance heater, which is not considered efficient, has an HSPF of 3.41. [3] Depending on the system, an HSPF ≥ 9 can be considered high efficiency and worthy of a US Energy Tax Credit. [4] For instance, a system which delivers an HSPF of 7.7 will transfer 2.25 times as much heat as electricity consumed over a season. [5]
The energy factor metric only applies to residential water heaters, which are currently defined by fuel, type, and input capacity. [5] Generally, the EF number represents the thermal efficiency of the water heater as a percentage, since it is an average of the ratio of the theoretical heat required to raise the temperature of water drawn to the amount of energy actually consumed by the water ...
Get AOL Mail for FREE! Manage your email like never before with travel, photo & document views. Personalize your inbox with themes & tabs. You've Got Mail!
Thermal conduction rate, thermal current, thermal/heat flux, thermal power transfer P = / W ML 2 T −3: Thermal intensity I = / W⋅m −2: MT −3: Thermal/heat flux density (vector analogue of thermal intensity above) q