When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Nitrogen fixation - Wikipedia

    en.wikipedia.org/wiki/Nitrogen_fixation

    Nitrogen fixation is a chemical process by which molecular dinitrogen (N 2) is converted into ammonia (NH 3). [1] It occurs both biologically and abiologically in chemical industries. Biological nitrogen fixation or diazotrophy is catalyzed by enzymes called nitrogenases. [2]

  3. Nitrogen cycle - Wikipedia

    en.wikipedia.org/wiki/Nitrogen_cycle

    Most biological nitrogen fixation occurs by the activity of molybdenum (Mo)-nitrogenase, found in a wide variety of bacteria and some Archaea. Mo-nitrogenase is a complex two-component enzyme that has multiple metal-containing prosthetic groups. [22] An example of free-living bacteria is Azotobacter.

  4. Abiological nitrogen fixation using homogeneous catalysts

    en.wikipedia.org/wiki/Abiological_nitrogen...

    Abiological nitrogen fixation describes chemical processes that fix (react with) N 2, usually with the goal of generating ammonia. The dominant technology for abiological nitrogen fixation is the Haber process, which uses iron-based heterogeneous catalysts and H 2 to convert N 2 to NH 3. This article focuses on homogeneous (soluble) catalysts ...

  5. Nitrogenase - Wikipedia

    en.wikipedia.org/wiki/Nitrogenase

    Nitrogenase is an enzyme responsible for catalyzing nitrogen fixation, which is the reduction of nitrogen (N 2) to ammonia (NH 3) and a process vital to sustaining life on Earth. [9] There are three types of nitrogenase found in various nitrogen-fixing bacteria: molybdenum (Mo) nitrogenase, vanadium (V) nitrogenase, and iron-only (Fe ...

  6. Heterocyst - Wikipedia

    en.wikipedia.org/wiki/Heterocyst

    Heterocysts or heterocytes are specialized nitrogen-fixing cells formed during nitrogen starvation by some filamentous cyanobacteria, such as Nostoc, Cylindrospermum, and Anabaena. [1] They fix nitrogen from dinitrogen (N 2) in the air using the enzyme nitrogenase, in order to provide the cells in the filament with nitrogen for biosynthesis. [2]

  7. Denitrification - Wikipedia

    en.wikipedia.org/wiki/Denitrification

    The lighter isotope of nitrogen, 14 N, is preferred during denitrification, leaving the heavier nitrogen isotope, 15 N, in the residual matter. This selectivity leads to the enrichment of 14 N in the biomass compared to 15 N. [ 27 ] Moreover, the relative abundance of 14 N can be analyzed to distinguish denitrification apart from other ...

  8. Human impact on the nitrogen cycle - Wikipedia

    en.wikipedia.org/wiki/Human_impact_on_the...

    Utilizing a large amount of metabolic energy and the enzyme nitrogenase, some bacteria and cyanobacteria convert atmospheric N 2 to NH 3, a process known as biological nitrogen fixation (BNF). [4] The anthropogenic analogue to BNF is the Haber-Bosch process, in which H 2 is reacted with atmospheric N 2 at high temperatures and pressures to ...

  9. Nitrification - Wikipedia

    en.wikipedia.org/wiki/Nitrification

    Nitrification is the biological oxidation of ammonia to nitrate via the intermediary nitrite. Nitrification is an important step in the nitrogen cycle in soil. The process of complete nitrification may occur through separate organisms [1] or entirely within one organism, as in comammox bacteria. The transformation of ammonia to nitrite is ...