When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. 68–95–99.7 rule - Wikipedia

    en.wikipedia.org/wiki/68–95–99.7_rule

    For an approximately normal data set, the values within one standard deviation of the mean account for about 68% of the set; while within two standard deviations account for about 95%; and within three standard deviations account for about 99.7%. Shown percentages are rounded theoretical probabilities intended only to approximate the empirical ...

  3. Binomial proportion confidence interval - Wikipedia

    en.wikipedia.org/wiki/Binomial_proportion...

    In contrast, it is worth noting that other confidence interval may have coverage levels that are lower than the nominal , i.e., the normal approximation (or "standard") interval, Wilson interval, [8] Agresti–Coull interval, [13] etc., with a nominal coverage of 95% may in fact cover less than 95%, [4] even for large sample sizes.

  4. Confidence interval - Wikipedia

    en.wikipedia.org/wiki/Confidence_interval

    The confidence interval can be expressed in terms of statistical significance, e.g.: "The 95% confidence interval represents values that are not statistically significantly different from the point estimate at the .05 level." [20] Interpretation of the 95% confidence interval in terms of statistical significance.

  5. Interval estimation - Wikipedia

    en.wikipedia.org/wiki/Interval_estimation

    Differentiating between two-sided and one-sided intervals on a standard normal distribution curve. Two-sided intervals estimate a parameter of interest, Θ, with a level of confidence, γ, using a lower and upper bound (). Examples may include estimating the average height of males in a geographic region or lengths of a particular desk made by ...

  6. Chebyshev's inequality - Wikipedia

    en.wikipedia.org/wiki/Chebyshev's_inequality

    The dependence of the confidence intervals on sample size is further illustrated below. For N = 10, the 95% confidence interval is approximately ±13.5789 standard deviations. For N = 100 the 95% confidence interval is approximately ±4.9595 standard deviations; the 99% confidence interval is approximately ±140.0 standard deviations.

  7. Rule of three (statistics) - Wikipedia

    en.wikipedia.org/wiki/Rule_of_three_(statistics)

    Comparison of the rule of three to the exact binomial one-sided confidence interval with no positive samples. In statistical analysis, the rule of three states that if a certain event did not occur in a sample with n subjects, the interval from 0 to 3/ n is a 95% confidence interval for the rate of occurrences in the population.

  8. Student's t-distribution - Wikipedia

    en.wikipedia.org/wiki/Student's_t-distribution

    Calculating the confidence interval. Let's say we have a sample with size 11, sample mean 10, and sample variance 2. For 90% confidence with 10 degrees of freedom, the one-sided t value from the table is 1.372 . Then with confidence interval calculated from

  9. Confidence distribution - Wikipedia

    en.wikipedia.org/wiki/Confidence_Distribution

    Classically, a confidence distribution is defined by inverting the upper limits of a series of lower-sided confidence intervals. [15] [16] [page needed] In particular, For every α in (0, 1), let (−∞, ξ n (α)] be a 100α% lower-side confidence interval for θ, where ξ n (α) = ξ n (X n,α) is continuous and increasing in α for each sample X n.