When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Strength of materials - Wikipedia

    en.wikipedia.org/wiki/Strength_of_materials

    Compressive stress (or compression) is the stress state caused by an applied load that acts to reduce the length of the material (compression member) along the axis of the applied load; it is, in other words, a stress state that causes a squeezing of the material. A simple case of compression is the uniaxial compression induced by the action of ...

  3. Size effect on structural strength - Wikipedia

    en.wikipedia.org/wiki/Size_Effect_on_Structural...

    For quasibrittle materials, measuring the size effect on the peak loads (and on the specimen softening after the peak load) is the simplest approach. Knowing the size effect is also important in the reverse sense—for micrometer scale devices if they are designed partly or fully on the basis of material properties measured more conveniently on ...

  4. Necking (engineering) - Wikipedia

    en.wikipedia.org/wiki/Necking_(engineering)

    Importantly, the condition also corresponds to a peak (plateau) in the nominal stress – nominal strain plot. This can be seen on obtaining the gradient of such a plot by differentiating the expression for σ N with respect to ε N .

  5. Compressive strength - Wikipedia

    en.wikipedia.org/wiki/Compressive_strength

    ´ =, where F is load applied [N] and A is area [m 2]. As stated, the area of the specimen varies on compression. In reality therefore the area is some function of the applied load i.e. A = f (F). Indeed, stress is defined as the force divided by the area at the start of the experiment.

  6. Stress (mechanics) - Wikipedia

    en.wikipedia.org/wiki/Stress_(mechanics)

    Stress analysis is a branch of applied physics that covers the determination of the internal distribution of internal forces in solid objects. It is an essential tool in engineering for the study and design of structures such as tunnels, dams, mechanical parts, and structural frames, under prescribed or expected loads.

  7. Power (physics) - Wikipedia

    en.wikipedia.org/wiki/Power_(physics)

    Power is the rate with respect to time at which work is done; it is the time derivative of work: =, where P is power, W is work, and t is time.. We will now show that the mechanical power generated by a force F on a body moving at the velocity v can be expressed as the product: = =

  8. Euler's critical load - Wikipedia

    en.wikipedia.org/wiki/Euler's_critical_load

    This formula was derived in 1744 by the Swiss mathematician Leonhard Euler. [2] The column will remain straight for loads less than the critical load. The critical load is the greatest load that will not cause lateral deflection (buckling). For loads greater than the critical load, the column will deflect laterally.

  9. Deflection (engineering) - Wikipedia

    en.wikipedia.org/wiki/Deflection_(engineering)

    Deflection (f) in engineering. In structural engineering, deflection is the degree to which a part of a long structural element (such as beam) is deformed laterally (in the direction transverse to its longitudinal axis) under a load.