When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Vertical and horizontal bundles - Wikipedia

    en.wikipedia.org/wiki/Vertical_and_horizontal...

    Vertical and horizontal subspaces for the Möbius strip. The Möbius strip is a line bundle over the circle, and the circle can be pictured as the middle ring of the strip. At each point e {\displaystyle e} on the strip, the projection map projects it towards the middle ring, and the fiber is perpendicular to the middle ring.

  3. Ehresmann connection - Wikipedia

    en.wikipedia.org/wiki/Ehresmann_connection

    Conversely, if Φ is a vector bundle endomorphism of TE satisfying these two properties, then H = ker Φ is the horizontal subbundle of an Ehresmann connection. Finally, note that Φ , being a linear mapping of each tangent space into itself, may also be regarded as a TE -valued 1-form on E .

  4. Two-vector - Wikipedia

    en.wikipedia.org/wiki/Two-vector

    A two-vector or bivector [1] is a tensor of type () and it is the dual of a two-form, meaning that it is a linear functional which maps two-forms to the real numbers (or more generally, to scalars). The tensor product of a pair of vectors is a two-vector. Then, any two-form can be expressed as a linear combination of tensor products of pairs of ...

  5. Orthogonality (mathematics) - Wikipedia

    en.wikipedia.org/wiki/Orthogonality_(mathematics)

    In Euclidean space, two vectors are orthogonal if and only if their dot product is zero, i.e. they make an angle of 90° (radians), or one of the vectors is zero. [4] Hence orthogonality of vectors is an extension of the concept of perpendicular vectors to spaces of any dimension.

  6. Linear independence - Wikipedia

    en.wikipedia.org/wiki/Linear_independence

    That is to say, the north vector cannot be described in terms of the east vector, and vice versa. The third "5 miles northeast" vector is a linear combination of the other two vectors, and it makes the set of vectors linearly dependent, that is, one of the three vectors is unnecessary to define a specific location on a plane.

  7. Tangential and normal components - Wikipedia

    en.wikipedia.org/wiki/Tangential_and_normal...

    Illustration of tangential and normal components of a vector to a surface. In mathematics, given a vector at a point on a curve, that vector can be decomposed uniquely as a sum of two vectors, one tangent to the curve, called the tangential component of the vector, and another one perpendicular to the curve, called the normal component of the vector.

  8. AOL Mail

    mail.aol.com

    Get AOL Mail for FREE! Manage your email like never before with travel, photo & document views. Personalize your inbox with themes & tabs. You've Got Mail!

  9. Euclidean vector - Wikipedia

    en.wikipedia.org/wiki/Euclidean_vector

    If the dot product of two vectors is defined—a scalar-valued product of two vectors—then it is also possible to define a length; the dot product gives a convenient algebraic characterization of both angle (a function of the dot product between any two non-zero vectors) and length (the square root of the dot product of a vector by itself).