Search results
Results From The WOW.Com Content Network
Basic aircraft control surfaces and motion. A)aileron B)control stick C)elevator D)rudder. Aircraft flight control surfaces are aerodynamic devices allowing a pilot to adjust and control the aircraft's flight attitude. Development of an effective set of flight control surfaces was a critical advance in the development of aircraft.
Cockpit controls and instrument panel of a Cessna 182D Skylane. Generally, the primary cockpit flight controls are arranged as follows: [2] A control yoke (also known as a control column), centre stick or side-stick (the latter two also colloquially known as a control or joystick), governs the aircraft's roll and pitch by moving the ailerons (or activating wing warping on some very early ...
A control system includes control surfaces which, when deflected, generate a moment (or couple from ailerons) about the cg which rotates the aircraft in pitch, roll, and yaw. For example, a pitching moment comes from a force applied at a distance forward or aft of the cg, causing the aircraft to pitch up or down.
An aircraft 'rolling', or 'banking', with its ailerons An aileron and roll trim tab of a light aircraft. An aileron (French for "little wing" or "fin") is a hinged flight control surface usually forming part of the trailing edge of each wing of a fixed-wing aircraft. [1]
A flight control mode or flight control law is a computer software algorithm that transforms the movement of the yoke or joystick, made by an aircraft pilot, into movements of the aircraft control surfaces. The control surface movements depend on which of several modes the flight computer is in. In aircraft in which the flight control system is ...
A hydraulic system is required for high speed flight and large aircraft to convert the crews' control system movements to surface movements. The hydraulic system is also used to extend and retract landing gear, operate flaps and slats, operate the wheel brakes and steering systems.
The flight dynamics of spacecraft differ from those of aircraft in that the aerodynamic forces are of very small, or vanishingly small effect for most of the vehicle's flight, and cannot be used for attitude control during that time. Also, most of a spacecraft's flight time is usually unpowered, leaving gravity as the dominant force.
Supersonic aircraft usually have all-moving tailplanes (stabilators), because shock waves generated on the horizontal stabilizer greatly reduce the effectiveness of hinged elevators during supersonic flight. Delta winged aircraft combine ailerons and elevators –and their respective control inputs– into one control surface called an elevon.