When.com Web Search

  1. Ads

    related to: poynting vector electromagnetic wave formula physics answer

Search results

  1. Results From The WOW.Com Content Network
  2. Poynting vector - Wikipedia

    en.wikipedia.org/wiki/Poynting_vector

    In physics, the Poynting vector (or Umov–Poynting vector) represents the directional energy flux (the energy transfer per unit area, per unit time) or power flow of an electromagnetic field. The SI unit of the Poynting vector is the watt per square metre (W/m 2 ); kg/s 3 in base SI units.

  3. Poynting's theorem - Wikipedia

    en.wikipedia.org/wiki/Poynting's_theorem

    In electrodynamics, Poynting's theorem is a statement of conservation of energy for electromagnetic fields developed by British physicist John Henry Poynting. [1] It states that in a given volume, the stored energy changes at a rate given by the work done on the charges within the volume, minus the rate at which energy leaves the volume.

  4. Energy current - Wikipedia

    en.wikipedia.org/wiki/Energy_current

    Building on the concept of the Poynting vector, which describes the flow of energy in a transverse electromagnetic wave as the vector product of its electric and magnetic fields (E × H), Heaviside sought to extend this by treating the transfer of energy due to the electric current in a conductor in a similar manner. In doing so he reversed the ...

  5. Huygens principle of double refraction - Wikipedia

    en.wikipedia.org/wiki/Huygens_principle_of...

    For example, if the wave propagation is in the z-direction, both the electric field and the magnetic field lie in the xy-plane. The electric field points in a specific direction in space since it is a vector. The direction of an electromagnetic wave's electric field vector E is referred to as polarization. If the electric field oscillates in ...

  6. Fresnel equations - Wikipedia

    en.wikipedia.org/wiki/Fresnel_equations

    The Poynting vector for a wave is a vector whose component in any direction is the irradiance (power per unit area) of that wave on a surface perpendicular to that direction. For a plane sinusoidal wave the Poynting vector is ⁠ 1 / 2 ⁠ ‍ Re{ E × H ∗ } , where E and H are due only to the wave in question, and the asterisk denotes ...

  7. Plane of polarization - Wikipedia

    en.wikipedia.org/wiki/Plane_of_polarization

    For waves in a birefringent (doubly-refractive) crystal, under the old definition, one must also specify whether the direction of propagation means the ray direction (Poynting vector) or the wave-normal direction, because these directions generally differ and are both perpendicular to the magnetic vector (Fig. 1).

  8. Mathematical descriptions of the electromagnetic field

    en.wikipedia.org/wiki/Mathematical_descriptions...

    Curvature of spacetime affects electrodynamics. An electromagnetic field having energy and momentum also generates curvature in spacetime. Maxwell's equations in curved spacetime can be obtained by replacing the derivatives in the equations in flat spacetime with covariant derivatives. (Whether this is the appropriate generalization requires ...

  9. Electromagnetic wave equation - Wikipedia

    en.wikipedia.org/wiki/Electromagnetic_wave_equation

    The electromagnetic wave equation is a second-order partial differential equation that describes the propagation of electromagnetic waves through a medium or in a vacuum. It is a three-dimensional form of the wave equation. The homogeneous form of the equation, written in terms of either the electric field E or the magnetic field B, takes the form: