When.com Web Search

  1. Ad

    related to: proof of convergence of sequence equation formula solver pdf worksheet

Search results

  1. Results From The WOW.Com Content Network
  2. Convergence proof techniques - Wikipedia

    en.wikipedia.org/wiki/Convergence_proof_techniques

    Convergence proof techniques are canonical patterns of mathematical proofs that sequences or functions converge to a finite limit when the argument tends to infinity.. There are many types of sequences and modes of convergence, and different proof techniques may be more appropriate than others for proving each type of convergence of each type of sequence.

  3. Dirichlet's test - Wikipedia

    en.wikipedia.org/wiki/Dirichlet's_test

    In mathematics, Dirichlet's test is a method of testing for the convergence of a series that is especially useful for proving conditional convergence. It is named after its author Peter Gustav Lejeune Dirichlet , and was published posthumously in the Journal de Mathématiques Pures et Appliquées in 1862.

  4. Proofs of convergence of random variables - Wikipedia

    en.wikipedia.org/wiki/Proofs_of_convergence_of...

    Proof of the theorem: Recall that in order to prove convergence in distribution, one must show that the sequence of cumulative distribution functions converges to the F X at every point where F X is continuous. Let a be such a point. For every ε > 0, due to the preceding lemma, we have:

  5. Stolz–Cesàro theorem - Wikipedia

    en.wikipedia.org/wiki/Stolz–Cesàro_theorem

    In mathematics, the Stolz–Cesàro theorem is a criterion for proving the convergence of a sequence. It is named after mathematicians Otto Stolz and Ernesto Cesàro, who stated and proved it for the first time. The Stolz–Cesàro theorem can be viewed as a generalization of the Cesàro mean, but also as a l'Hôpital's rule for sequences.

  6. Weierstrass M-test - Wikipedia

    en.wikipedia.org/wiki/Weierstrass_M-test

    In mathematics, the Weierstrass M-test is a test for determining whether an infinite series of functions converges uniformly and absolutely.It applies to series whose terms are bounded functions with real or complex values, and is analogous to the comparison test for determining the convergence of series of real or complex numbers.

  7. Convergence tests - Wikipedia

    en.wikipedia.org/wiki/Convergence_tests

    While most of the tests deal with the convergence of infinite series, they can also be used to show the convergence or divergence of infinite products. This can be achieved using following theorem: Let { a n } n = 1 ∞ {\displaystyle \left\{a_{n}\right\}_{n=1}^{\infty }} be a sequence of positive numbers.

  8. Steffensen's method - Wikipedia

    en.wikipedia.org/wiki/Steffensen's_method

    The version of Steffensen's method implemented in the MATLAB code shown below can be found using the Aitken's delta-squared process for accelerating convergence of a sequence. To compare the following formulae to the formulae in the section above, notice that x n = p − p n . {\displaystyle x_{n}=p\,-\,p_{n}~.}

  9. Cauchy condensation test - Wikipedia

    en.wikipedia.org/wiki/Cauchy_condensation_test

    The essential thrust of a proof follows, patterned after Oresme's proof of the divergence of the harmonic series. To see the first inequality, the terms of the original series are rebracketed into runs whose lengths are powers of two, and then each run is bounded above by replacing each term by the largest term in that run. That term is always ...