Search results
Results From The WOW.Com Content Network
In geometry, chamfering or edge-truncation is a topological operator that modifies one polyhedron into another. It is similar to expansion: it moves the faces apart (outward), and adds a new face between each two adjacent faces; but contrary to expansion, it maintains the original vertices. (Equivalently: it separates the faces by reducing them ...
It is constructed as a chamfer (edge-truncation) of a regular dodecahedron. The pentagons are reduced in size and new hexagonal faces are added in place of all the original edges. Its dual is the pentakis icosidodecahedron. It is also called a truncated rhombic triacontahedron, constructed as a truncation of the rhombic triacontahedron.
Uniform truncation are a special case of this with equal edge lengths. The truncated cube, t{4,3}, with square faces becoming octagons, with new triangular faces are the vertices. Antitruncation A reverse shallow truncation, truncated outwards off the original edges, rather than inward. This results in a polytope which looks like the original ...
The truncated dodecahedron is constructed from a regular dodecahedron by cutting all of its vertices off, a process known as truncation. [1] Alternatively, the truncated dodecahedron can be constructed by expansion: pushing away the edges of a regular dodecahedron, forming the pentagonal faces into decagonal faces, as well as the vertices into triangles. [2]
The icosidodecahedron is a rectified dodecahedron and also a rectified icosahedron, existing as the full-edge truncation between these regular solids. The icosidodecahedron contains 12 pentagons of the dodecahedron and 20 triangles of the icosahedron :
A bitruncation can be seen as the truncation of the dual. A bitruncated cube is a truncated octahedron. Cantellated (rr) (Also expanded) rr{p,q} In addition to vertex truncation, each original edge is beveled with new rectangular faces appearing in their place. A uniform cantellation is halfway between both the parent and dual forms.
The surface area and the volume of the truncated icosahedron of edge length are: [2] = (+ +) = +. The sphericity of a polyhedron describes how closely a polyhedron resembles a sphere. It can be defined as the ratio of the surface area of a sphere with the same volume to the polyhedron's surface area, from which the value is between 0 and 1.
In geometry, a cantellation is a 2nd-order truncation in any dimension that bevels a regular polytope at its edges and at its vertices, creating a new facet in place of each edge and of each vertex. Cantellation also applies to regular tilings and honeycombs .