Search results
Results From The WOW.Com Content Network
Plants use meiosis to produce spores that develop into multicellular haploid gametophytes which produce gametes by mitosis. In animals there is no corresponding multicellular haploid phase. The sperm of plants that reproduce using spores are formed by mitosis in an organ of the gametophyte known as the antheridium and the egg cells by mitosis ...
Male gametes are called sperm, and female gametes are called eggs or ova. In animals, fertilization of the ovum by a sperm results in the formation of a diploid zygote that develops by repeated mitotic divisions into a diploid adult. Plants have two multicellular life-cycle phases, resulting in an alternation of generations. Plant zygotes ...
One of the outcomes of plant reproduction is the generation of seeds, spores, and fruits [13] that allow plants to move to new locations or new habitats. [14] Plants do not have nervous systems or any will for their actions. Even so, scientists are able to observe mechanisms that help their offspring thrive as they grow.
As in animals, female and male gametes are called, respectively, eggs and sperm. In extant land plants, either the sporophyte or the gametophyte may be reduced (heteromorphic). [2] No extant gametophytes have stomata, but they have been found on fossil species like the early Devonian Aglaophyton from the Rhynie chert. [3]
In plants both phases are multicellular: the haploid sexual phase – the gametophyte – alternates with a diploid asexual phase – the sporophyte. A mature sporophyte produces haploid spores by meiosis, a process which reduces the number of chromosomes to half, from two sets to one. The resulting haploid spores germinate and grow into ...
A few types of organisms, such as many fungi and the ciliate Paramecium aurelia, [11] have more than two "sexes", called mating types. Most animals (including humans) and plants reproduce sexually. Sexually reproducing organisms have different sets of genes for every trait (called alleles). Offspring inherit one allele for each trait from each ...
The evolutionary shift from outcrossing to self-fertilization is one of the most frequent evolutionary transitions in plants. Since autogamy in flowering plants and autogamy in unicellular species is fundamentally different, and plants and protists are not related, it is likely that both instances evolved separately.
This is an accepted version of this page This is the latest accepted revision, reviewed on 28 December 2024. Union of gametes of opposite sexes during the process of sexual reproduction to form a zygote This article is about fertilisation in animals and plants. For fertilisation in humans specifically, see Human fertilization. For soil improvement, see Fertilizer. "Conceive" redirects here ...