Ads
related to: what is a partial product in math example questions
Search results
Results From The WOW.Com Content Network
In mathematics, a telescoping series is a series whose general term is of the form = +, i.e. the difference of two consecutive terms of a sequence (). As a consequence the partial sums of the series only consists of two terms of ( a n ) {\displaystyle (a_{n})} after cancellation.
Two other well-known examples are when integration by parts is applied to a function expressed as a product of 1 and itself. This works if the derivative of the function is known, and the integral of this derivative times is also known. The first example is (). We write this as:
However the product order of two total orders is not in general total; for example, the pairs (,) and (,) are incomparable in the product order of the ordering < with itself. The lexicographic combination of two total orders is a linear extension of their product order, and thus the product order is a subrelation of the lexicographic order.
The advantage of the triple product rule is that by rearranging terms, one can derive a number of substitution identities which allow one to replace partial derivatives which are difficult to analytically evaluate, experimentally measure, or integrate with quotients of partial derivatives which are easier to work with. For example,
A partial function arises from the consideration of maps between two sets X and Y that may not be defined on the entire set X.A common example is the square root operation on the real numbers : because negative real numbers do not have real square roots, the operation can be viewed as a partial function from to .
Another example is given by the divisibility (or "is-a-factor-of") relation |. For two natural numbers n and m, we write n|m if n divides m without remainder. One easily sees that this yields a partial order. For example neither 3 divides 13 nor 13 divides 3, so 3 and 13 are not comparable elements of the divisibility relation on the set of ...