When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Molar volume - Wikipedia

    en.wikipedia.org/wiki/Molar_volume

    The ideal gas equation can be rearranged to give an expression for the molar volume of an ideal gas: = = Hence, for a given temperature and pressure, the molar volume is the same for all ideal gases and is based on the gas constant: R = 8.314 462 618 153 24 m 3 ⋅Pa⋅K −1 ⋅mol −1, or about 8.205 736 608 095 96 × 10 −5 m 3 ⋅atm⋅K ...

  3. Molar concentration - Wikipedia

    en.wikipedia.org/wiki/Molar_concentration

    To create the solution, 11.6 g NaCl is placed in a volumetric flask, dissolved in some water, then followed by the addition of more water until the total volume reaches 100 mL. The density of water is approximately 1000 g/L and its molar mass is 18.02 g/mol (or 1/18.02 = 0.055 mol/g). Therefore, the molar concentration of water is

  4. Molality - Wikipedia

    en.wikipedia.org/wiki/Molality

    In chemistry, molality is a measure of the amount of solute in a solution relative to a given mass of solvent. This contrasts with the definition of molarity which is based on a given volume of solution. A commonly used unit for molality is the moles per kilogram (mol/kg). A solution of concentration 1 mol/kg is also sometimes denoted as 1 molal.

  5. Mass concentration (chemistry) - Wikipedia

    en.wikipedia.org/wiki/Mass_concentration_(chemistry)

    In solutions, mass concentration is commonly encountered as the ratio of mass/[volume solution], or m/v. In water solutions containing relatively small quantities of dissolved solute (as in biology), such figures may be "percentivized" by multiplying by 100 a ratio of grams solute per mL solution. The result is given as "mass/volume percentage".

  6. Equivalent concentration - Wikipedia

    en.wikipedia.org/wiki/Equivalent_concentration

    Normality is defined as the number of gram or mole equivalents of solute present in one liter of solution.The SI unit of normality is equivalents per liter (Eq/L). = where N is normality, m sol is the mass of solute in grams, EW sol is the equivalent weight of solute, and V soln is the volume of the entire solution in liters.

  7. Ebullioscopic constant - Wikipedia

    en.wikipedia.org/wiki/Ebullioscopic_constant

    R is the ideal gas constant. M is the molar mass of the solvent. T b is boiling point of the pure solvent in kelvin. ΔH vap is the molar enthalpy of vaporization of the solvent. Through the procedure called ebullioscopy, a known constant can be used to calculate an unknown molar mass. The term ebullioscopy means "boiling measurement" in Latin.

  8. Dilution (equation) - Wikipedia

    en.wikipedia.org/wiki/Dilution_(equation)

    For example, if there are 10 grams of salt (the solute) dissolved in 1 litre of water (the solvent), this solution has a certain salt concentration . If one adds 1 litre of water to this solution, the salt concentration is reduced. The diluted solution still contains 10 grams of salt (0.171 moles of NaCl).

  9. Cryoscopic constant - Wikipedia

    en.wikipedia.org/wiki/Cryoscopic_constant

    b is the molality of the solution. Through cryoscopy, a known constant can be used to calculate an unknown molar mass. The term "cryoscopy" means "freezing measurement" in Greek. Freezing point depression is a colligative property, so ΔT depends only on the number of solute particles dissolved, not the nature of those particles.