Search results
Results From The WOW.Com Content Network
Desulfovibrio vulgaris is the best-studied sulfate-reducing microorganism species; the bar in the upper right is 0.5 micrometre long.. Sulfate-reducing microorganisms (SRM) or sulfate-reducing prokaryotes (SRP) are a group composed of sulfate-reducing bacteria (SRB) and sulfate-reducing archaea (SRA), both of which can perform anaerobic respiration utilizing sulfate (SO 2−
Only few taxa are true sulfur-reducing bacteria, using sulfur reduction as the only or main catabolic reaction. [6] Normally, they couple this reaction with the oxidation of acetate, succinate or other organic compounds. In general, sulfate-reducing bacteria are able to use both sulfate and elemental sulfur as electron acceptors. Thanks to its ...
Reactions of oxidation of sulfide to sulfate and elemental sulfur (incorrectly balanced). The electrons (e −) liberated from these oxidation reactions, which release chemical energy, are then used to fix carbon into organic molecules. The elements that become oxidized are shown in pink, those that become reduced in blue, and the electrons in ...
Overview of dissimilatory sulfate reduction performed by sulfate-reducing microorganisms. Dissimilatory sulfate reduction is a form of anaerobic respiration that uses sulfate as the terminal electron acceptor to produce hydrogen sulfide. This metabolism is found in some types of bacteria and archaea which are often termed sulfate-reducing ...
Sulfate reduction coupled to ammonium oxidation, or sulfammox, is a novel multi-step microbial process especially pertinent to industrial wastewater treatment. Microbial species associated with sulfammox include but are not limited to Anammoxoglobus sulfate, Bacillus benzoevorans, Candidatus_ Anammoxoglobus, Bacillus cereus SUD-1.
Sulfur reduction occurs in plants, fungi, and many bacteria. [10] Sulfate can serve as an electron acceptor in anaerobic respiration and can also be reduced for the formation of organic compounds. Sulfate-reducing bacteria reduce sulfate and other oxidized sulfur compounds, such as sulfite, thiosulfate, and elemental sulfur, to sulfide.
The enzyme is essential in prokaryotic sulfur-based energy metabolism, including sulfate/sulfite reducing organisms, sulfur-oxidizing bacteria, and organosulfonate reducers. In sulfur reducers it catalyses the reduction of sulfite to sulfide (reaction 1), while in sulfur oxidizers it catalyses the opposite reaction (reaction 2). [2]
Unlike the first two mechanisms, both the ANME archaea and NC10 bacteria compete for methane. [6] The overall reaction is: CH 4 + SO 4 2− → HCO 3 − + HS − + H 2 O. Sulfate-driven AOM is mediated by a syntrophic consortium of methanotrophic archaea and sulfate-reducing bacteria. [7] They often form small aggregates or sometimes ...