Ad
related to: 18.06sc linear algebra pdf notes
Search results
Results From The WOW.Com Content Network
English: Linear Algebra by Jim Hefferon, along with its answers to exercises, is a text for a first undergraduate course. It is Free. Use it as the main book, as a supplement, or for independent study.
Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free Documentation License, Version 1.2 or any later version published by the Free Software Foundation; with no Invariant Sections, no Front-Cover Texts, and no Back-Cover Texts.
Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free Documentation License, Version 1.2 or any later version published by the Free Software Foundation; with no Invariant Sections, no Front-Cover Texts, and no Back-Cover Texts.
With respect to general linear maps, linear endomorphisms and square matrices have some specific properties that make their study an important part of linear algebra, which is used in many parts of mathematics, including geometric transformations, coordinate changes, quadratic forms, and many other part of mathematics.
In linear algebra, a Jordan normal form, also known as a Jordan canonical form, [1] [2] is an upper triangular matrix of a particular form called a Jordan matrix representing a linear operator on a finite-dimensional vector space with respect to some basis.
His 1966 text, Fundamentals of Linear Algebra [3] includes these words in the dedication, "It is my hope that this book will continue to serve those students of mathematics and science for whom a more than rudimentary background in linear algebra is an indispensable part of their training." When the book came out in a new edition in 1979 ...
linear form A linear map from a vector space to its field of scalars [8] linear independence Property of being not linearly dependent. [9] linear map A function between vector space s which respects addition and scalar multiplication. linear transformation A linear map whose domain and codomain are equal; it is generally supposed to be invertible.
A linear function is a polynomial function in which the variable x has degree at most one: [2] = +. Such a function is called linear because its graph, the set of all points (, ()) in the Cartesian plane, is a line. The coefficient a is called the slope of the function and of the line (see below).