When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Enzyme - Wikipedia

    en.wikipedia.org/wiki/Enzyme

    Enzymes can be classified by two main criteria: either amino acid sequence similarity (and thus evolutionary relationship) or enzymatic activity. Enzyme activity. An enzyme's name is often derived from its substrate or the chemical reaction it catalyzes, with the word ending in -ase.

  3. Protease - Wikipedia

    en.wikipedia.org/wiki/Protease

    Ribbon diagram of a protease (TEV protease) complexed with its peptide substrate in black with catalytic residues in red.(. A protease (also called a peptidase, proteinase, or proteolytic enzyme) [1] is an enzyme that catalyzes proteolysis, breaking down proteins into smaller polypeptides or single amino acids, and spurring the formation of new protein products. [2]

  4. Acetylcholinesterase - Wikipedia

    en.wikipedia.org/wiki/Acetylcholinesterase

    It is an enzyme that catalyzes the breakdown of acetylcholine and some other choline esters that function as neurotransmitters: acetylcholine + H 2 O = choline + acetate. It is found at mainly neuromuscular junctions and in chemical synapses of the cholinergic type, where its activity serves to terminate cholinergic synaptic transmission.

  5. List of enzymes - Wikipedia

    en.wikipedia.org/wiki/List_of_enzymes

    Function: Amylase is an enzyme that is responsible for the breaking of the bonds in starches, polysaccharides, and complex carbohydrates to be turned into simple sugars that will be easier to absorb. Clinical Significance: Amylase also has medical history in the use of Pancreatic Enzyme Replacement Therapy (PERT). One of the components is ...

  6. Active site - Wikipedia

    en.wikipedia.org/wiki/Active_site

    Organisation of enzyme structure and lysozyme example. Binding sites in blue, catalytic site in red and peptidoglycan substrate in black. (In biology and biochemistry, the active site is the region of an enzyme where substrate molecules bind and undergo a chemical reaction.

  7. Angiotensin-converting enzyme - Wikipedia

    en.wikipedia.org/wiki/Angiotensin-converting_enzyme

    Angiotensin-converting enzyme (EC 3.4.15.1), or ACE, is a central component of the renin–angiotensin system (RAS), which controls blood pressure by regulating the volume of fluids in the body. It converts the hormone angiotensin I to the active vasoconstrictor angiotensin II .

  8. Amylase - Wikipedia

    en.wikipedia.org/wiki/Amylase

    In animals, it is a major digestive enzyme, and its optimum pH is 6.7–7.0. [3] In human physiology, both the salivary and pancreatic amylases are α-amylases. The α-amylase form is also found in plants, fungi (ascomycetes and basidiomycetes) and bacteria .

  9. Kinase - Wikipedia

    en.wikipedia.org/wiki/Kinase

    The kinase enzymes increase the rate of the reactions by making the inositol hydroxyl group more nucleophilic, often using the side chain of an amino acid residue to act as a general base and deprotonate the hydroxyl, as seen in the mechanism below. [24] Here, a reaction between adenosine triphosphate (ATP) and phosphatidylinositol is coordinated.