Search results
Results From The WOW.Com Content Network
The ordered sequential types are lists (dynamic arrays), tuples, and strings. All sequences are indexed positionally (0 through length - 1) and all but strings can contain any type of object, including multiple types in the same sequence. Both strings and tuples are immutable, making them perfect candidates for dictionary keys (see below).
Python. The use of the triple-quotes to comment-out lines of source, does not actually form a comment. [19] The enclosed text becomes a string literal, which Python usually ignores (except when it is the first statement in the body of a module, class or function; see docstring). Elixir
For example, consider variables a, b and c of some user-defined type, such as matrices: a + b * c. In a language that supports operator overloading, and with the usual assumption that the '*' operator has higher precedence than the '+' operator, this is a concise way of writing: Add(a, Multiply(b, c))
In arbitrary-precision arithmetic, it is common to use long multiplication with the base set to 2 w, where w is the number of bits in a word, for multiplying relatively small numbers. To multiply two numbers with n digits using this method, one needs about n 2 operations.
The image of a function f(x 1, x 2, …, x n) is the set of all values of f when the n-tuple (x 1, x 2, …, x n) runs in the whole domain of f.For a continuous (see below for a definition) real-valued function which has a connected domain, the image is either an interval or a single value.
[6] [7] [a] The parentheses can be omitted if the input is a single numerical variable or constant, [2] as in the case of sin x = sin(x) and sin π = sin(π). [a] Traditionally this convention extends to monomials; thus, sin 3x = sin(3x) and even sin 1 / 2 xy = sin(xy/2), but sin x + y = sin(x) + y, because x + y is not a monomial ...
Multivalued functions of a complex variable have branch points. For example, for the nth root and logarithm functions, 0 is a branch point; for the arctangent function, the imaginary units i and −i are branch points. Using the branch points, these functions may be redefined to be single-valued functions, by restricting the range.
In number theory, a multiplicative function is an arithmetic function f(n) of a positive integer n with the property that f(1) = 1 and = () whenever a and b are coprime.. An arithmetic function f(n) is said to be completely multiplicative (or totally multiplicative) if f(1) = 1 and f(ab) = f(a)f(b) holds for all positive integers a and b, even when they are not coprime.