Search results
Results From The WOW.Com Content Network
Molar concentration or molarity is most commonly expressed in units of moles of solute per litre of solution. [1] For use in broader applications, it is defined as amount of substance of solute per unit volume of solution, or per unit volume available to the species, represented by lowercase : [2]
Making a standard solution requires great attention to detail to avoid introducing any risk of contamination that could diminish the accuracy of the concentration. For this reason, glassware with high degree of precision such as a volumetric flask, volumetric pipette, micropipettes, and automatic pipettes are used in the preparation steps. The ...
Ammonia solutions decrease in density as the concentration of dissolved ammonia increases. At 15.6 °C (60.1 °F), the density of a saturated solution is 0.88 g/ml; it contains 35.6% ammonia by mass, 308 grams of ammonia per litre of solution, and has a molarity of approximately 18 mol/L.
There are many different ways to prepare PBS solutions, common ones are Dulbecco's phosphate-buffered saline (DPBS) [2] and the Cold Spring Harbor protocol. [3] Some formulations of DPBS do not contain potassium and magnesium, while other ones contain calcium and/or magnesium (depending on whether or not the buffer is used on live or fixed tissue: the latter does not require CaCl 2 or MgCl 2).
Making a saline water solution by dissolving table salt in water.The salt is the solute and the water the solvent. In chemistry, a solution is defined by IUPAC as "A liquid or solid phase containing more than one substance, when for convenience one (or more) substance, which is called the solvent, is treated differently from the other substances, which are called solutes.
The term molality is formed in analogy to molarity which is the molar concentration of a solution. The earliest known use of the intensive property molality and of its adjectival unit, the now-deprecated molal, appears to have been published by G. N. Lewis and M. Randall in the 1923 publication of Thermodynamics and the Free Energies of Chemical Substances. [3]
Butyllithium is commercially available as solutions (15%, 25%, 1.5 M, 2 M, 2.5 M, 10 M, etc.) in alkanes such as pentane, hexanes, and heptanes. Solutions in diethyl ether and THF can be prepared, but are not stable enough for storage. Annual worldwide production and consumption of butyllithium and other organolithium compounds is estimated at ...
Few procedures have been reported to prepare the anhydrous solid. Instead the material is typically prepared in a solution with ethanol. It is commercially available and as a solution in ethanol. It is easily prepared in the laboratory by treating sodium metal with absolute ethanol: [3] 2 CH 3 CH 2 OH + 2 Na → 2 CH 3 CH 2 ONa + H 2