Search results
Results From The WOW.Com Content Network
Consequently, if a liquid has dynamic viscosity of n centiPoise, and its density is not too different from that of water, then its kinematic viscosity is around n centiStokes. For gas, the dynamic viscosity is usually in the range of 10 to 20 microPascal-seconds, or 0.01 to 0.02 centiPoise. The density is usually on the order of 0.5 to 5 kg/m^3.
The dilute gas viscosity contribution to the total viscosity of a fluid will only be important when predicting the viscosity of vapors at low pressures or the viscosity of dense fluids at high temperatures. The viscosity model for dilute gas, that is shown above, is widely used throughout the industry and applied science communities.
A centipoise is one hundredth of a poise, or one millipascal-second (mPa⋅s) in SI units (1 cP = 10 −3 Pa⋅s = 1 mPa⋅s). [4] The CGS symbol for the centipoise is cP. The abbreviations cps, cp, and cPs are sometimes seen. Liquid water has a viscosity of 0.00890 P at 25 °C at a pressure of 1 atmosphere (0.00890 P = 0.890 cP = 0.890 mPa⋅s).
For instance, a 20% saline (sodium chloride) solution has viscosity over 1.5 times that of pure water, whereas a 20% potassium iodide solution has viscosity about 0.91 times that of pure water. An idealized model of dilute electrolytic solutions leads to the following prediction for the viscosity μ s {\displaystyle \mu _{s}} of a solution: [ 57 ]
A simple and widespread empirical correlation for liquid viscosity is a two-parameter exponential: μ = A e B / T {\displaystyle \mu =Ae^{B/T}} This equation was first proposed in 1913, and is commonly known as the Andrade equation (named after British physicist Edward Andrade ).
The basic form of a 2-dimensional thin film equation is [3] [4] [5] = where the fluid flux is = [(+ ^) + ^] +, and μ is the viscosity (or dynamic viscosity) of the liquid, h(x,y,t) is film thickness, γ is the interfacial tension between the liquid and the gas phase above it, is the liquid density and the surface shear.
Dimensionless numbers (or characteristic numbers) have an important role in analyzing the behavior of fluids and their flow as well as in other transport phenomena. [1] They include the Reynolds and the Mach numbers, which describe as ratios the relative magnitude of fluid and physical system characteristics, such as density, viscosity, speed of sound, and flow speed.
Other names are sometimes employed for one or both parameters, depending on context. For example, the parameter μ is referred to in fluid dynamics as the dynamic viscosity of a fluid (not expressed in the same units); whereas in the context of elasticity, μ is called the shear modulus, [2]: p.333 and is sometimes denoted by G instead of μ.