Search results
Results From The WOW.Com Content Network
Thoracentesis / ˌ θ ɔː r ə s ɪ n ˈ t iː s ɪ s /, also known as thoracocentesis (from Greek θώραξ (thōrax, GEN thōrakos) 'chest, thorax' and κέντησις (kentēsis) 'pricking, puncture'), pleural tap, needle thoracostomy, or needle decompression (often used term), is an invasive medical procedure to remove fluid or air from the pleural space for diagnostic or therapeutic ...
The transcellular fluid is the portion of total body fluid that is formed by the secretory activity of epithelial cells and is contained within specialized epithelial-lined compartments. Fluid does not normally collect in larger amounts in these spaces, [6] [7] and any significant fluid collection in these spaces is physiologically ...
The inner ear (internal ear, auris interna) is the innermost part of the vertebrate ear. In vertebrates, the inner ear is mainly responsible for sound detection and balance. [1] In mammals, it consists of the bony labyrinth, a hollow cavity in the temporal bone of the skull with a system of passages comprising two main functional parts: [2]
The vestibular membrane helps to transmit vibrations from fluid in the vestibular duct to the cochlear duct. [4] Together with the basilar membrane, the vestibular membrane creates a compartment in the cochlea filled with endolymph. This is important for the function of the spiral organ of Corti.
Perilymph is the fluid contained within the bony labyrinth, surrounding and protecting the membranous labyrinth; perilymph resembles extracellular fluid in composition (sodium salts are the predominant positive electrolyte) and, via the cochlear aqueduct (sometimes referred to as the "perilymphatic duct"), is in continuity with cerebrospinal fluid.
The tympanic duct or scala tympani is one of the perilymph-filled cavities in the inner ear of humans. It is separated from the cochlear duct by the basilar membrane, and it extends from the round window to the helicotrema, where it continues as vestibular duct.
Cross-section through the spiral organ of Corti at greater magnification, showing position of the hair cells on the basement membrane. The organ of Corti is located in the scala media of the cochlea of the inner ear between the vestibular duct and the tympanic duct and is composed of mechanosensory cells, known as hair cells. [2]
Air pressure changes in the ear canal cause the vibrations of the tympanic membrane and middle ear ossicles. At the end of the ossicular chain, movement of the stapes footplate within the oval window of the cochlea generates a pressure field within the cochlear fluids, imparting a pressure differential across the basilar membrane .