Search results
Results From The WOW.Com Content Network
In probability theory and statistics, a stochastic order quantifies the concept of one random variable being "bigger" than another. These are usually partial orders , so that one random variable A {\displaystyle A} may be neither stochastically greater than, less than, nor equal to another random variable B {\displaystyle B} .
A stochastic or random process can be defined as a collection of random variables that is indexed by some mathematical set, meaning that each random variable of the stochastic process is uniquely associated with an element in the set. [4] [5] The set used to index the random variables is called the index set.
The word stochastic is used to describe other terms and objects in mathematics. Examples include a stochastic matrix, which describes a stochastic process known as a Markov process, and stochastic calculus, which involves differential equations and integrals based on stochastic processes such as the Wiener process, also called the Brownian ...
The order in probability notation is used in probability theory and statistical theory in direct parallel to the big O notation that is standard in mathematics.Where the big O notation deals with the convergence of sequences or sets of ordinary numbers, the order in probability notation deals with convergence of sets of random variables, where convergence is in the sense of convergence in ...
Independence is a fundamental notion in probability theory, as in statistics and the theory of stochastic processes.Two events are independent, statistically independent, or stochastically independent [1] if, informally speaking, the occurrence of one does not affect the probability of occurrence of the other or, equivalently, does not affect the odds.
A stochastic differential equation (SDE) is a differential equation in which one or more of the terms is a stochastic process, [1] resulting in a solution which is also a stochastic process. SDEs have many applications throughout pure mathematics and are used to model various behaviours of stochastic models such as stock prices , [ 2 ] random ...
If a stochastic process is strict-sense stationary and has finite second moments, it is wide-sense stationary. [2]: p. 299 If two stochastic processes are jointly (M + N)-th-order stationary, this does not guarantee that the individual processes are M-th- respectively N-th-order stationary. [1]: p. 159
Stochastic dominance is a partial order between random variables. [1] [2] It is a form of stochastic ordering.The concept arises in decision theory and decision analysis in situations where one gamble (a probability distribution over possible outcomes, also known as prospects) can be ranked as superior to another gamble for a broad class of decision-makers.