Search results
Results From The WOW.Com Content Network
It follows that arbitrarily large prime numbers can be found as the prime factors of the numbers !, leading to a proof of Euclid's theorem that the number of primes is infinite. [35] When n ! ± 1 {\displaystyle n!\pm 1} is itself prime it is called a factorial prime ; [ 36 ] relatedly, Brocard's problem , also posed by Srinivasa Ramanujan ...
We can use this fact to prove part of a famous result: for any prime p such that p ≡ 1 (mod 4), the number (−1) is a square (quadratic residue) mod p. For this, suppose p = 4k + 1 for some integer k. Then we can take m = 2k above, and we conclude that (m!) 2 is congruent to (−1) (mod p).
The process may become clearer with a longer example. Let's say we want the 2982nd permutation of the numbers 0 through 6. The number 2982 is 4:0:4:1:0:0:0! in factoradic, and that number picks out digits (4,0,6,2,1,3,5) in turn, via indexing a dwindling ordered set of digits and picking out each digit from the set at each turn:
When asked about 0.999..., novices often believe there should be a "final 9", believing 1 − 0.999... to be a positive number which they write as "0.000...1". Whether or not that makes sense, the intuitive goal is clear: adding a 1 to the final 9 in 0.999... would carry all the 9s into 0s and leave a 1 in the ones place.
De Moivre gave an approximate rational-number expression for the natural logarithm of the constant. Stirling's contribution consisted of showing that the constant is precisely 2 π {\displaystyle {\sqrt {2\pi }}} .
In number theory, a factorion in a given number base is a natural number that equals the sum of the factorials of its digits. [1] [2] [3] The name factorion was coined by the author Clifford A. Pickover. [4]
For example, the empty products 0! = 1 (the factorial of zero) and x 0 = 1 shorten Taylor series notation (see zero to the power of zero for a discussion of when x = 0). Likewise, if M is an n × n matrix, then M 0 is the n × n identity matrix , reflecting the fact that applying a linear map zero times has the same effect as applying the ...
As one special case, it can be used to prove that if n is a positive integer then 4 divides () if and only if n is not a power of 2. It follows from Legendre's formula that the p -adic exponential function has radius of convergence p − 1 / ( p − 1 ) {\displaystyle p^{-1/(p-1)}} .