When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Bound graph - Wikipedia

    en.wikipedia.org/wiki/Bound_graph

    In graph theory, a bound graph expresses which pairs of elements of some partially ordered set have an upper bound.Rigorously, any graph G is a bound graph if there exists a partial order ≤ on the vertices of G with the property that for any vertices u and v of G, uv is an edge of G if and only if u ≠ v and there is a vertex w such that u ≤ w and v ≤ w.

  3. Boundary (graph theory) - Wikipedia

    en.wikipedia.org/wiki/Boundary_(graph_theory)

    In graph theory, the outer boundary of a subset S of the vertices of a graph G is the set of vertices in G that are adjacent to vertices in S, but not in S themselves. The inner boundary is the set of vertices in S that have a neighbor outside S.

  4. Infimum and supremum - Wikipedia

    en.wikipedia.org/wiki/Infimum_and_supremum

    Then has an upper bound (, for example, or ) but no least upper bound in : If we suppose is the least upper bound, a contradiction is immediately deduced because between any two reals and (including and ) there exists some rational , which itself would have to be the least upper bound (if >) or a member of greater than (if <).

  5. Upper and lower bounds - Wikipedia

    en.wikipedia.org/wiki/Upper_and_lower_bounds

    Similarly, a function g defined on domain D and having the same codomain (K, ≤) is an upper bound of f, if g(x) ≥ f (x) for each x in D. The function g is further said to be an upper bound of a set of functions, if it is an upper bound of each function in that set.

  6. Lovász number - Wikipedia

    en.wikipedia.org/wiki/Lovász_number

    In graph theory, the Lovász number of a graph is a real number that is an upper bound on the Shannon capacity of the graph. It is also known as Lovász theta function and is commonly denoted by (), using a script form of the Greek letter theta to contrast with the upright theta used for Shannon capacity.

  7. Extreme value theorem - Wikipedia

    en.wikipedia.org/wiki/Extreme_value_theorem

    By the boundedness theorem, f is bounded from above, hence, by the Dedekind-completeness of the real numbers, the least upper bound (supremum) M of f exists. It is necessary to find a point d in [a, b] such that M = f(d). Let n be a natural number. As M is the least upper bound, M – 1/n is not an upper bound for f.

  8. Zorn's lemma - Wikipedia

    en.wikipedia.org/wiki/Zorn's_lemma

    If T is the empty set, then {v} is an upper bound for T in P. Suppose then that T is non-empty. We need to show that T has an upper bound, that is, there exists a linearly independent subset B of V containing all the members of T. Take B to be the union of all the sets in T. We wish to show that B is an upper bound for T in P.

  9. Ramsey's theorem - Wikipedia

    en.wikipedia.org/wiki/Ramsey's_theorem

    An upper bound for R(r, s) can be extracted from the proof of the theorem, and other arguments give lower bounds. (The first exponential lower bound was obtained by Paul Erdős using the probabilistic method.) However, there is a vast gap between the tightest lower bounds and the tightest upper bounds.