When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Natural logarithm - Wikipedia

    en.wikipedia.org/wiki/Natural_logarithm

    The natural logarithm of a number is its logarithm to the base of the mathematical constant e, which is an irrational and transcendental number approximately equal to 2.718 281 828 459. [1] The natural logarithm of x is generally written as ln x, log e x, or sometimes, if the base e is implicit, simply log x.

  3. Logarithm - Wikipedia

    en.wikipedia.org/wiki/Logarithm

    [45] [46] Newton's method, an iterative method to solve equations approximately, can also be used to calculate the logarithm, because its inverse function, the exponential function, can be computed efficiently. [47] Using look-up tables, CORDIC-like methods can be used to compute logarithms by using only the operations of addition and bit shifts.

  4. List of logarithmic identities - Wikipedia

    en.wikipedia.org/wiki/List_of_logarithmic_identities

    Logarithms can be used to make calculations easier. For example, two numbers can be multiplied just by using a logarithm table and adding. These are often known as logarithmic properties, which are documented in the table below. [2] The first three operations below assume that x = b c and/or y = b d, so that log b (x) = c and log b (y) = d.

  5. LogSumExp - Wikipedia

    en.wikipedia.org/wiki/LogSumExp

    The LSE function is often encountered when the usual arithmetic computations are performed on a logarithmic scale, as in log probability. [5]Similar to multiplication operations in linear-scale becoming simple additions in log-scale, an addition operation in linear-scale becomes the LSE in log-scale:

  6. Exponentiation - Wikipedia

    en.wikipedia.org/wiki/Exponentiation

    Just as computing matrix powers with discrete exponents solves discrete dynamical systems, so does computing matrix powers with continuous exponents solve systems with continuous dynamics. Examples include approaches to solving the heat equation , Schrödinger equation , wave equation , and other partial differential equations including a time ...

  7. Euler's formula - Wikipedia

    en.wikipedia.org/wiki/Euler's_formula

    The logarithm of a complex number is thus a multi-valued function, because φ is multi-valued. Finally, the other exponential law =, which can be seen to hold for all integers k, together with Euler's formula, implies several trigonometric identities, as well as de Moivre's formula.

  8. Characterizations of the exponential function - Wikipedia

    en.wikipedia.org/wiki/Characterizations_of_the...

    In mathematics, the exponential function can be characterized in many ways. This article presents some common characterizations, discusses why each makes sense, and proves that they are all equivalent. The exponential function occurs naturally in many branches of mathematics. Walter Rudin called it "the most important function in mathematics". [1]

  9. Discrete logarithm - Wikipedia

    en.wikipedia.org/wiki/Discrete_logarithm

    For example, log 10 10000 = 4, and log 10 0.001 = −3. These are instances of the discrete logarithm problem. Other base-10 logarithms in the real numbers are not instances of the discrete logarithm problem, because they involve non-integer exponents. For example, the equation log 10 53 = 1.724276… means that 10 1.724276… = 53.