When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Molecular orbital diagram - Wikipedia

    en.wikipedia.org/wiki/Molecular_orbital_diagram

    Molecular orbital diagram of NO. Nitric oxide is a heteronuclear molecule that exhibits mixing. The construction of its MO diagram is the same as for the homonuclear molecules. It has a bond order of 2.5 and is a paramagnetic molecule. The energy differences of the 2s orbitals are different enough that each produces its own non-bonding σ orbitals.

  3. Bond order - Wikipedia

    en.wikipedia.org/wiki/Bond_order

    In molecular orbital theory, bond order is defined as half the difference between the number of bonding electrons and the number of antibonding electrons as per the equation below. [4][5] This often but not always yields similar results for bonds near their equilibrium lengths, but it does not work for stretched bonds. [6] Bond order is also an ...

  4. Hückel method - Wikipedia

    en.wikipedia.org/wiki/Hückel_method

    The Hückel method or Hückel molecular orbital theory, proposed by Erich Hückel in 1930, is a simple method for calculating molecular orbitals as linear combinations of atomic orbitals. The theory predicts the molecular orbitals for π-electrons in π-delocalized molecules , such as ethylene , benzene , butadiene , and pyridine .

  5. Carbon dioxide - Wikipedia

    en.wikipedia.org/wiki/Carbon_dioxide

    The symmetry of a carbon dioxide molecule is linear and centrosymmetric at its equilibrium geometry. The length of the carbon–oxygen bond in carbon dioxide is 116.3 pm, noticeably shorter than the roughly 140 pm length of a typical single C–O bond, and shorter than most other C–O multiply bonded functional groups such as carbonyls. [19]

  6. Carbon–carbon bond - Wikipedia

    en.wikipedia.org/wiki/Carbon–carbon_bond

    A carbon–carbon bond is a covalent bond between two carbon atoms. [1] The most common form is the single bond: a bond composed of two electrons, one from each of the two atoms. The carbon–carbon single bond is a sigma bond and is formed between one hybridized orbital from each of the carbon atoms. In ethane, the orbitals are sp 3 ...

  7. Molecular orbital - Wikipedia

    en.wikipedia.org/wiki/Molecular_orbital

    In chemistry, a molecular orbital (/ ɒrbədl /) is a mathematical function describing the location and wave-like behavior of an electron in a molecule. This function can be used to calculate chemical and physical properties such as the probability of finding an electron in any specific region.

  8. Diatomic carbon - Wikipedia

    en.wikipedia.org/wiki/Diatomic_carbon

    Molecular orbital theory shows that there are two sets of paired electrons in a degenerate pi bonding set of orbitals. This gives a bond order of 2, meaning that there should exist a double bond between the two carbon atoms in a C 2 molecule. [3] One analysis suggested instead that a quadruple bond exists, [4] an interpretation that was ...

  9. Carbon–oxygen bond - Wikipedia

    en.wikipedia.org/wiki/Carbon–oxygen_bond

    Carbon–oxygen bond. A carbon–oxygen bond is a polar covalent bond between atoms of carbon and oxygen. [1][2][3]: 16–22 Carbon–oxygen bonds are found in many inorganic compounds such as carbon oxides and oxohalides, carbonates and metal carbonyls, [4] and in organic compounds such as alcohols, ethers, and carbonyl compounds. [5]: 32–36 ...